SANDIA REPORT

SAND2008-2639
Unlimited Release
Printed April 2008

The Portals 4.0 Message Passing Interface

Rolf Riesen, Ron Brightwell, Kevin Pedretti, and Brian Barrett, Sandia National Laboratories
Keith Underwood, Intel Corporation

Arthur B. Maccabe, University of New Mexico,

Trammell Hudson, Rotomotion

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2008-2639
Unlimited Release
Printed April 2008

The Portals 4.0 Message Passing Interface

Rolf Riesen Keith Underwood
Ron Brightwell DEG Architecture and Planning
Kevin Pedretti Intel Corporation
Brian Barrett P.O. Box 5800
Scalable Computing Systems Department Albuguerque, NM 87185-1319
Sandia National Laboratories Keith.D.Underwood@intel.com
P.O. Box 5800

Albuquerque, NM 87185-1319
rolf@cs.sandia.gov
bright@cs.sandia.gov
ktpedre@sandia.gov
bwbarre@sandia.gov

Arthur B. Maccabe Trammell Hudson
Computer Science Department c/o OS Research
University of New Mexico 1527 16th NW #5
Albuquerque, NM 87131-1386 Washington, DC 20036
maccabe@cs.unm.edu hudson@osresearch.net
Abstract

This report presents a specification for the Portals 4.0 agespassing interface. Portals 4.0 are intended to allow
scalable, high-performance network communication betweeles of a parallel computing system. Portals 4.0 are
well suited to massively parallel processing and embedgstems. Portals 4.0 represent an adaption of the data
movement layer developed for massively parallel procggsiatforms, such as the 4500-node Intel TeraFLOPS
machine. Version 3.0 of Portals runs on the Cplant clust8aatlia National Laboratories, and version 3.3 is running
on Cray’s Red Storm system. Version 4.0 is targeted to thegeneration of machines employing advanced network
interface architectures to support enhanced offload chipeti

Acknowledgments

Over the years, many people have helped shape, design, @agantals code. We wish to thank: Eric Barton, Peter
Braam, Lee Ann Fisk, David Greenberg, Eric Hoffman, Gabai§tJeanette Johnston, Chu Jong, Clint Kaul, Mike
Levenhagen, Kevin McCurley, Jim Otto, David Robboy, MarkaSeLance Shuler, Jim Schutt, Mack Stallcup, Todd
Underwood, David van Dresser, Dena Vigil, Lee Ward, and Is#apNVheat.

People who were influential in managing the project werd: @mp, Ed Barsis, Art Hale, and Neil Pundit

While we have tried to be comprehensive in our listing of thepgbe involved, it is very likely that we have missed at
least one important contributor. The omission is a reflectibour poor memories and not a reflection of the
importance of their contributions. We apologize to the uned contributor(s).

Contents

List of Figures

List of Tables

List of Implementation Notes

Preface

Nomenclature

1 Introduction

11
1.2
1.3
1.4
15
1.6
1.7

OV BIVIBW . .« . ettt et e e e e e e e e e e e e

PUIPOSE. . o

BacKgroUNG. . . .o e e

Scalability

Communication MOGEL e

Zero Copy, OS Bypass, and Application Bypass.ottt

Faults.

2 An Overview of the Portals API

21
2.2
2.3
2.4
2.5

Data MOVEMENE

Portals AddresSSiNg. . .. oot

FIOW CONtrol e e e e e e e e e e e e e

3 The Portals API

3.1 Naming Conventions and Typeface Usage

i BASE TYPES. o ottt
Bi2 L SIZS. o
3.22 Handles
3.2.3 INOEXES. . o ot
324 MatCh BitS . ..ot
3.25 Network INterfaceso e
3.2.6 ddentifiers.
3.2.7 StalUS ReQIStEIS o

3.3 RetUM COOES. . . oot

3.4 Initialization and Cleanup o
B4 L PHINIt .

34,2 PHRINI . . 38

3.5 Network Interfaces. 38
3.5.1 The Network Interface LimitS Type.ot e e e 40
3.5.2 PHNIINIE .o 40
3.5.3 PHNIFINI . .o 43
3.5.4 PHNISIAIUS. . . .ot 43
355 PUUNIHandle. 44

3.6 Portal Table ENtries. oo e 45
3.6.1 PUUPTAIIOC. . . .o 45
3.6.2 PHUPTFrEE. . ..o 46
3.6.3 PUPTDIsable 46
3.6.4 PHUPTENADIE. 47

3.7 Userldentification 47
3.7.1 PHUGEtUId . . .o 47

3.8 Process ldentification e 48
3.8.1 The Process ldentification TYpeo ot 84
3.8.2 PHGEtd . ..o 49

3.9 Process AQQregation.ttt e 49
3.9.1 PHGEdId. . ..o o 50

3.10 MemOry DESCHIPIOIS . . . ottt ettt e e e e e e 50
3.10.1 The Memory DesCrptor TYPE . . . vttt e e e e e e e e e 50
3.10.2 The /O VeCtor TYPE . . . oottt e e e e e e e e e e 52
3.10.3 PtMDBING . . .ot 52
3.10.4 PtMDREICASE.o 53

3.11 ListEntries and Lists.o e 54
3.11.1 The LIStENY Y. « oo ettt e e e e e e e e e e e e 54
3.11.2 PHULEAPPENG. . .o 57
3.11.3 PHLEUNINK . ..o 58

3.12 Match List Entries and Matching Lists 59
3.12.1 The Match List Entry Type.ot e e e e e et e 59
3.12.2 PHUMEAPDPENGo 62
3.12.3 PHUMEUNINK. . .o 64

3.13 Events and EVENt QUEUESottt e e e 65
3.13.1 Kinds Of EVENES. . . .o 65
3.13.2 EVENEOCCUITENCE. . . o ottt et e e e e e 66
3.13.3 Failure Notification e 69
3.13.4 The EVeNt QUEUE TYPES . oottt ettt e e e e e e e e 69
3.13.5 PHEQAIIOC. . . .ot 71
3.13.6 PUEQFIEE . . .o 72

3137 PHUEQGEL. . ..o 73
3.13.8 PHUEQWAILo 74
3.13.9 PHEQPOIL. . .. 74
3.14 Lightweight “Counting” EVENTS. i e 76
3.14.1 The Counting EVENt TYPE . . .o\ttt e e e e et e e 76
3.14.2 PHCTAIOC . . . oot e e e e e e e e e 77
3143 PHUCTRIEE . .ot 78
Bl 4 PUCT G . ottt 78
3145 PHUCTWAIL . ..o 79
3148 PHUCT et . ottt 79
3147 PUCTINC. . oo 80
3.15 Data Movement OperationsS.ttt e e e e 80
3.15.1 Portals Acknowledgment Type Definitian i 80
305 2 PUPUL . . 81
3053 PG L. . oo 82
3.15.4 Portals AtOmICS OVEIVIEWottt e et e e e e e e 83
3155 PUAIOMIC . . .o 85
3.15.6 PHFetChAIOMICo 86
3057 PHUSWaAD . . ot 88
3.16 Triggered OPEerationsttt e e e 89
3.16.1 PHTRgOEredPUL.o 90
3.16.2 PtITriggeredGeto 90
3.16.3 PHITriggeredAtOmIC.ot e 91
3.16.4 PtlTriggeredFetChAtOMIC. o 93
3.16.5 PHTRQOEredSWaD.ot 94
3.16.6 PtITHggeredCTINGot e e e e 95
3.17 Operations On Handles.o 95
3.17.1 PtiHandlelsEqual e 95
318 SUMMAIY. . ot e e e e 96
4 The Semantics of Message Transmission 105
4.1 Sending MESSA0ES ot ittt e 105
4.2 RECEIVING MESSA0ES . . o o v v ittt ittt et et e et e 108
References 111
Appendix
A Frequently Asked Questions 113
B Portals Design Guidelines 115
B.1 Mandatory ReqUIrEMENISot e 115

B.2 TheWill ReqQUIrEMENES.o e e et
B.3 TheShouldRequUIremMENtSo e e e

C A README Template

D Implementations
D.1 Reference Implementation e
D.2 Portals 3.3 onthe Cray XT3/XT4/XT5 Red Storm.t
D.2. 1 GENEIIC. « ottt
D.2.2 Accelerated o

E Summary of Changes

Index

List of Figures

2.1 Graphical CoNVENLIONSttt e e e e 23
2.2 POrals PUt (SEN) . . . oo 24
2.3 Portals Get (Receive) fromamatchlistentry. i 25
2.4 Portals Get (Receive) fromalistentry. i e 26
2.5 Portals Atomic Swap Operation.t 26
2.6 Portals Atomic SUM OPEration.t 27
2.7 Portals LE Addressing StrUCtUISottt it 28
2.8 Portals ME Addressing StrUCLUIES.ot ottt 29
2.9 Matching Portals Address Translation. i e e e e 30
2.10 Non-Matching Portals Address Translation.. i e 31
2.11 Simple PUt EXampleo 34
3.1 Portals Operations and EVent TYPES.o vttt e e 67

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

ObJeCt TYPE COUEBS. . . . o .ottt e e e e e e e e e 35
EVeNt TYPE SUMMALY. oot e e e e e e e 68
POrtals Data TYPES. . . v v v ittt e et e e 97
Portals FUNCHIONS. 98
Portals Return CoOESo 99
Portals COoNSIANTS.ot 100
SENA REQUESE. . . . 106
ACKNOWIEAgMENLo 107
ACKNOWIEAgMENL 107
Gt REOUESE . . . o 108
REPIY . . 108
ALOMIC REOUESEot e e 109
Portals Operationsand ME/LE Flags i e e e e s 110

10

List of Implementation Notes

© 00 N O o b~ WODN PP

W W W W WNNNNDNNNNNNDNRERRRRRPRP PR PP
B ON P O O© ® N0 00 b WNIPEO®O©OONOOODMWN P O

NOWIre ProtocColo 19
Weak Ordering SEMANTCS.ottt e et e e e e e e e e 20
User memory as SCratCh SPaCE.ottt 21
Don'talter put orreply buffers. e 21
Location of event queues and COUNTEISottt e e e e 25
Protected SPaCE.t 25
Ve IOW LSt . . .o 32
Non-matching address translatian 32
README and portalsd.no 35
Network interface encoded inhandle. 36
Size of handle tyPesS oo 36
Supporting fork(). . . .« oo 38
Logical Nnetwork INterfaces.o e 39
Multiple calls toPHNIINIE() oot e e e e 42
Objectencoding inhandle. 44
Support of I/O Vector Type and OffSet.o e 52
Unique memory descriptor handles 53
CheckingmatChid e e e 64
OVEIflOW EVENTS . . . o 66
Pending operations and buffer modificatians 67
Pending operations amttknowledgment. 68
Completion of portals operations 69
Location Of BVENE QUEBUE. oo e 72
Size of event queue and reserved SPacCE.ot e 27
Fairness OPHEQPOII() - . vt vt ittt et e e e e e 74
Macros USINGPHEQPOII()ottt ettt e e e e 75
Filling in theptl _eventt andptl _target_eventt structures 75
Counting Event Handles 76
Minimizing cost of COUNtING BVENTS.ot 77
Functions that require communication. i e 80
Ordering of Triggered OPerations.ottt e e 89
Implementation of Triggered Operations.ttt e e e e 89
Triggered Operations Reaching the Threshold. i 89
Information ONthe Wire. 105

11

35
36
37

Size of data on the wire

Acknowledgment reqUESES.ot

Implementations of Portals 3.3

12

Preface

In the early 1990s, when memory-to-memory copying speeds arorder of magnitude faster than the maximum
network bandwidth, it did not matter if data had to go throogle or two intermediate buffers on its way from the
network into user space. This began to change with earlyivedgparallel processing (MPP) systems, such as the
nCUBE-2 and the Intel Paragon, when network bandwidth beaaamparable to memory bandwidth. An
intermediate memory-to-memory copy now meant that onlf/thel available network bandwidth was used.

Early versions of Portals solved this problem in a novel wagtead of waiting for data to arrive and then copy it into
the final destination, Portals, in versions prior to 3.0p\aétd a user to describe what should happen to incoming data
by using data structures. A few basic data structures wee lilkee Legd™ blocks to create more complex structures.
The operating system kernel handling the data transferthessg structures when data began to arrive and
determined where to place the incoming data. Users weneedldo create matching criteria and to specify precisely
where data would eventually end up. The kernel, in turn, hadbility to DMA data directly into user space, which
eliminated buffer space in kernel owned memory and slow nmgsfi@@memory copies. We named that approach
Portals Version 2.0. It was used until 2006 on the ASCI Re@srgmputer, the first general-purpose machine to
break the one teraflops barrier.

Although very successful on architectures with lightweikgrnels, such as ASCI Red, Portals proved difficult to port
to Cplant Brightwell et al. 200Qwith its full-featured Linux kernel. Under Linux, memoryas no longer physically
contiguous in a one-to-one mapping with the kernel. Thiseribdrohibitively expensive for the kernel to traverse
data structures in user space. We wanted to keep the basieptaf using data structures to describe what should
happen to incoming data. We put a thin application programgrimiterface (API) over our data structures. We got rid
of some never-used building blocks, improved some of thersttand Portals 3.0 were born.

We defined the Version 3.0 API Brightwell, Hudson, Riesen, and Maccabe (19%ince then, Portals have gone
through three revisions. The latest was VersionRigsen, Brightwell, Maccabe, Hudson, and Pedretti (2006the
interim, the system context has changed significantly. Mawer systems are capable of offloading the vast
majority of the Portals implementation to the newtork ifdee. Indeed, the rapid growth of bandwidth and available
silicon area relative to the small decrease in memory Igteas made itlesirableto move latency sensitive tasks

like Portals matching to dedicated hardware better sudétd The implementation of Version 3.3 on ASC Red Storm
(Cray XT3/XT4/XT5) illuminated many challenges that havisen with these advances in technology. In this report,
we document Version 4.0 as a response to two specific chalestigcovered on Red Storm. Foremost, while the
performance of I/O buses has improved dramatically, trentat to cross an I/O bus relative to the target message
rates has risen dramatically. In addition, partitionedgladdress space (PGAS) models have risen in prominence
and require lighter weight semantics to support them.

13

Nomenclature

ACK
FM
AM
API

ASCI
ASC
ASCI Red

CPU
DMA
EQ
FIFO
FLOP

GM

ID

Initiator

IOVEC

LE

MD

ME

Message

Message Operation

MPI
MPP
NAL
NAND
Network

NI
NIC
Node

(0N

PM
POSIX
Process

RDMA
RMPP

Acknowledgement.

lllinois Fast Messages.

Active Messages.

Application Programming Interface. A definition of thentctions and
semantics provided by library of functions.

Advanced Simulation and Computing Initiative.

Advanced Simulation and Computing.

Intel Tflops system installed at Sandia Nationaldratories. First

general-purpose system to break one teraflop barrier.
Central Processing Unit.

Direct Memory Access.

Event Queue.

First In, First Out.

Floating Point OPeration. (Also FLOPS or flops: Flogtioint OPera-
tions per Second.)
Glenn’s Messages; Myricom’s Myrinet API.
Identifier
A procesghat initiates a message operation.
Input/Output Vector.
List Entry.
Memory Descriptor.
Matching list Entry.

An application-defined unit of data that is exchéubgéveerprocesses

Eitherut operation, which writes data totarget or agetoperation,
which reads data from target or a atomicwhich updates data atomi-
cally.
Message Passing Interface.
Massively Parallel Processor.

Network Abstraction Layer.
Bitwise Not AND operation.
A network provides point-to-point communicatioatlveennodes In-
ternally, a network may provide multiple routes betweenpenuts (to
improve fault tolerance or to improve performance charésttes); how-
ever, multiple paths will not be exposed outside of the netwo
Abstract portals Network Interface.
Network Interface Card.
A node is an endpoint in retwork Nodes provide processing capa-
bilities and memory. A node may provide multiple procesgarsSMP
node) or it may act as gatewaybetween networks.
Operating System.
Message passing layer for SCordBhjkawa et al. 1996
Portable Operating System Interface.

A context of execution. A process defines a virtuaiongcontext. This
context is not shared with other processes. Several threagshare the
virtual memory context defined by a process.

Remote Direct Memory Access.
Reliable Message Passing Protocol.

14

SMP
SUNMOS

Target
TCP/IP
Teraflop
Thread

UbP
UNIX
VIA

Shared Memory Processor.

Sandia national laboratories/University of New MexOperating Sys-
tem.

Aprocesghat is acted upon by a message operation.
Transmission Control Protocol/Internet Protocol.

162 flops.

A context of execution that shares a virtual memontexda with other
threads.

User Datagram Protocol.
A multiuser, multitasking, portable OS.
Virtual Interface Architecture.

15

16

Chapter 1

Introduction

1.1 Overview

This document describes an application programming imterfor message passing between nodes in a system area
network. The goal of this interface is to improve the scdiglénd performance of network communication by
defining the functions and semantics of message passingeddar scaling a parallel computing system to two
million cores or more. This goal is achieved by providing mteiface that will allow a quality implementation to take
advantage of the inherently scalable design of Pdrtals

This document is divided into several sections:

Sectionl — Introduction.
This section describes the purpose and scope of the porifs A

Section2 — An Overview of the Portals 4.0 API.
This section gives a brief overview of the portals API. Thalgs to introduce the key concepts and
terminology used in the description of the API.

Section3 - The Portals 4.0 API.
This section describes the functions and semantics of tttalp@\PI in detalil.

Section4 — The Semantics of Message Transmission.
This section describes the semantics of message tranemissiparticular, the information transmitted in each
type of message and the processing of incoming messages.

Appendix A — FAQ.
Frequently Asked Questions about Portals.

Appendix B — Portals Design Guidelines.
The guiding principles behind the portals design.

Appendix C — README-template.
A template for a README file to be provided by each implementat The README describes
implementation specific parameters.

Appendix D — Implementations.
A brief description of the portals 4.0 reference implemgataand the implementations that run on Cray’s
XT3/XT4/XT5 Red Storm machine.

Appendix E — Summary of Changes.
A list of changes between versions since Version 3.3.

1The word Portals is a plural proper noun. We use it when we tefthe definition, design, version, or similar aspects otétsr
2We use the lower case portals when it is used as an adjectivepertals document, a (generic) portals address, orlpanperations. We use
the singular when we refer to a specific portal or its attelue.g., portal index, portal table, or a (specific) pordarass.

17

1.2 Purpose

Existing message passing technologies available for sap®uter network hardware do not meet the scalability
goals required by emerging massively parallel procesdimtfiogpms that will have as many as two million processor
cores. This greatly exceeds the capacity for which existiegsage passing technologies have been designed and
implemented.

In addition to the scalability requirements of the netwahliese technologies must also be able to support a scalable,
high performance implementation of the Message Passiegidice (MPI) Message Passing Interface Forum 1]994
standard as well as the various partitioned global addps==gPGAS) models, such as unified parallel C (UPC),
Co-Array Fortran (CAF), and SHMEMJray Research, Inc. 19p4AVhile neither MPI nor PGAS models impose
specific scalability limitations, many message passingrelogies do not provide the functionality needed to allow
implementations of MPI to meet our scalability or perforroaigoals.

The following are required properties of a network archiiee to avoid scalability limitations:

» Connectionless — Many connection-oriented architestusech as InfiniBandiffiniband Trade Association
1999, VIA [Compagq, Microsoft, and Intel 199@nd TCP/IP sockets, have practical limitations on the neimb
of peer connections that can be established. In large-peaddiel systems, any node must be able to
communicate with any other node without costly connectital@ishment and tear down.

* Network independence — Many communication systems depeiige host processor to perform operations in
order for messages in the network to be consumed. Messagaroption from the network should not be
dependent on host processor activity, such as the opematstgm scheduler or user-level thread scheduler.
Applications must be able to continue computing while dataoved in and out of the application’s memory.

» User-level flow control — Many communication systems manigv control internally to avoid depleting
resources, which can significantly impact performance esittmber of communicating processes increases.
While Portals provides building blocks to enable flow con{xe Sectior2.3), it is the responsibility of the
application to manage flow control. An application shouldabte to provide final destination buffers into
which the network can deposit data directly.

¢ OS bhypass — High performance network communication shootithvolve memory copies into or out of a
kernel-managed protocol stack. Because networks are néastass memory buses, data has to flow directly
into user space.

The following are properties of a network architecture #natids scalability limitations for an implementation of
MPI:

« Receiver-managed — Sender-managed message passinmangéons require a persistent block of memory
to be available for every process, requiring memory ressitc increase with job size.

« User-level bypass (application bypass) — While OS bypassdsssary for high performance, it alone is not
sufficient to support thprogress rulef MPI asynchronous operations. After an application hastguba
receive, data must be delivered and acknowledged withotlt€fuintervention from the application.

» Unexpected messages — Few communication systems hawersigupeceiving messages for which there is no
prior notification. Support for these types of messagesasssary to avoid flow control and protocol overhead.

1.3 Background

Portals were originally designed for and implemented omtB&BE-2 machine as part of the SUNMOS
(Sandia/lUNM OS)Maccabe et al. 1994nd Puma$huler et al. 199Hightweight kernel development projects.

18

Portals went through three design phastie$en et al. 20Q5with the most recent one being used on the 13000-node
(38,400 cores) Cray Red Storrlyerson 2003that became the Cray XT3/XT4/XT5 product line. Portalsénbeen
very successful in meeting the needs of such large machinesnly as a layer for a high-performance MPI
implementation Brightwell and Shuler 1996but also for implementing the scalable run-time enviremtrand

parallel I/O capabilities of the machine.

The third generation portals implementation was desigoed System where the work required to process a message
was long relative to the round trip between the applicatioth the Portals data structures; however, in modern
systems where processing is offloaded onto the networkacerthe time to post a receive is dominated by the round
trip across the 1/0 bus. This latency has become largeveltdimessage latency and per message overheads (gap).
This limitation was exposed by implementations on the Crag Rtorm system. Version 4.0 of Portals addresses this
problem by adding the concept ofiexpected messagesPortals. The second limitation exposed on Red Storm was
the relative weight of handling newer PGAS programming ned@GAS programming models do not need the
extensive matching semantics required by MPI and 1/O libsaaind can achieve significantly lower latency and
higher message throughput without matching. Version 4Barfals adds a lightweight, non-matching interface to
support these semantics as well as lightweight events datbatedgments. Finally, version 4.0 of Portals reduces
the overheads in numerous implementation paths by sinmdifgvents, reducing the size of acknowledgments, and
generally specializing interfaces to eliminate data tlkpeeience has shown to be unnecessary.

1.4 Scalability

The primary goal in the design of Portals is scalability.tRisrare designed specifically for an implementation
capable of supporting a parallel job running on a milliongassing cores or more. Performance is critical only in
terms of scalability. That is, the level of message passarfppmance is characterized by how far it allows an
application to scale and not by how it performs in micro-tienarks (e.g., a two-node bandwidth or latency test).

The portals API is designed to allow for scalability, not teagantee it. Portals cannot overcome the shortcomings of
a poorly designed application program. Applications tteatehinherent scalability limitations, either through desi

or implementation, will not be transformed by Portals intalable applications. Scalability must be addressed at all
levels. Portals do not inhibit scalability and do not guéearit either. No portals operation requires global
communication or synchronization.

Similarly, a quality implementation is needed for Portal®é scalable. If the implementation or the network
protocols and hardware underneath it cannot scale to otiermilodes, then neither Portals nor the application can.

To support scalability, the portals interface maintainsimimmal amount of state. By default, Portals provide rekabl
ordered delivery of messages between pairs of processgalsPare connectionless: a process is not required to
explicitly establish a point-to-point connection with dimer process in order to communicate. Moreover, all buffers
used in the transmission of messages are maintained inpees.STheargetprocess determines how to respond to
incoming messages, and messages for which there are nostarféediscarded.

IMPLEMENTATION

No wire protocol
NOTE 1: —_—

This document does not specify a wire protocol. Portals require a
reliable communication layer. Whether that is achieved through
software or hardware is up to the implementation. For example, for
Red Storm two reliability protocols were implemented — one by Cray
and one by Sandia [Brightwell et al. 2006].

19

IMPLEMENTATION

WeakOrderingSemantics
NOTE 2:

The default ordering semantics for Portals messages only requires that
messages are started in order at the target. The underlying
implementation is free to deliver the body of two messages in whatever
order is necessary. This provides additional flexibility to the underlying
implementation. For example, the network can use a retransmission
protocol on the wire that retransmits a portion of a lost message
without violating ordering. Similarly, an implementation is free to use
adaptive routing to deliver the body of the message. An implementation
may, however, choose to provide stronger ordering than is required.
For example, to simplify the implementation of a shmem.f ence(), an
implementation may choose to provide strict ordering of data at the
target. In addition, an initiator may explicitly indicate that a message
does not have to be ordered at the target using an option on the MD
(see Section 3.10). There is also an issue with the ordering of data.
When data arrives in a region described by a list entry that happens to
overlap with a region described by a memory descriptor with an active
operation, the ordering of data operations is undefined. Data is only
available for transmit after the event corresponding to the arriving
message has been posted. Thus, triggered operations are safe, since
they do not trigger until the counting event is posted.

Discussion The specified ordering semantics of Portals is not suffigeatlow ashmemf ence()
operation to be treated as a no-op. Specific implementatibRertals maychooseto provide more strict
ordering requirements, or a SHMEM implementation may preebrmemf ence() to

shmemqui et () .

1.5 Communication Model

Portals combine the characteristics of both one-sidedwadsided communication. In addition to more traditional
“put” and “get” operations, they define “matching put” anddtohing get” operations. The destination qfa (or
send) is not an explicit address; instead, messages taegeh tist entries (potentially with an offset) using the
Portals addressing semantics that allow the receiver trméie where incoming messages should be placed. This
flexibility allows Portals to support both traditional osiled operations and two-sided send/receive operations.

Portals allow theargetto determine whether incoming messages are acceptalif@gétprocess can choose to
accept message operations from any specific process or oasecto ignore message operations from any specific
process.

1.6 Zero Copy, OS Bypass, and Application Bypass

In traditional system architectures, network packetsvami the network interface card (NIC), are passed through on
or more protocol layers in the operating system, and areteatiy copied into the address space of the application.
As network bandwidth began to approach memaory copy ratdaction of memory copies became a critical concern.
This concern led to the development of zero-copy messagénggsrotocols in which message copies are eliminated
or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an inggrfor the CPU when a message arrives from the
network. The interrupt handler then controls the transféh® incoming message into the address space of the

20

appropriate application. The interrupt latency, the timoarf the initiation of an interrupt until the interrupt haadls
running, is fairly significant. To avoid this cost, some modiICs have processors that can be programmed to
implement part of a message passing protocol. Given a dyopesigned protocol, it is possible to program the NIC
to control the transfer of incoming messages without negttirinterrupt the CPU. Because this strategy does not
need to involve the OS on every message transfer, it is fretyuealled “OS bypass.” STTask Group of Technical
Committee T11 1998VIA [Compag, Microsoft, and Intel 1997#M [Lauria et al. 1998 GM [Myricom, Inc.

1997, PM [Ishikawa et al. 1996 and Portals are examples of OS bypass mechanisms.

Many protocols that support OS bypass still require thasfbygication actively participates in the protocol to emsur
progress. As an example, the long message protocol of PNkresgbhat the application receive and reply to a request
to put or get a long message. This complicates the runtimiecgmaent, requiring a thread to process incoming
requests, and significantly increases the latency reqtorgiitiate a long message protocol. The portals message
passing protocol does not require activity on the part ofaghygication to ensure progress. We use the term
“application bypass” to refer to this aspect of the portatsqcol.

IMPLEMENTATION

Usermemoryasscratchspace
NOTE 3:

The portals API allows for user memory where data is being received
to be altered (e.g. at the target, or in a reply buffer at the initiator. That
means an implementation can utilize user memory as scratch space
and staging buffers. Only after an operation succeeds and the event
has been posted must the user memory reflect exactly the data that
has arrived. The portals API explicitly prohibits modifying the the buffer
passed into a put.

1.7 Faults

Given the number of components that we are dealing with amébitt that we are interested in supporting
applications that run for very long times, failures are iteve. The portals API recognizes that the underlying
transport may not be able to successfully complete an aperatce it has been initiated. This is reflected in the fact
that the portals API reports an event indicating the sud¢abssmpletion of every operation. Completion events carry
a flag which indicates whether the operation completed sstaiy or not.

Between the time an operation is started and the time thatgbeation completes (successfully or unsuccessfully),
any memory associated with “receiving data” should be a®rsid volatile. That is, the memory may be changed in
unpredictable ways while the operation is progressing.e@he operation completes, the memory associated with
the operation will not be subject to further modificatiorofr this operation). Notice that unsuccessful operations
may alter memory used to receive data in an essentially dighadle fashion. Memory associated with transmitting
data must not be modified by the implementation.

IMPLEMENTATION

Don't alterput or reply buffers
NOTE 4: P Y

An implementation must not alter data in a user buffer that is used in a
put or reply operation. This is independent of whether the operation
succeeds or fails.

21

22

Chapter 2

An Overview of the Portals API

In this chapter, we give a conceptual overview of the podls The goal is to provide a context for understanding
the detailed description of the API presented in the nexi@ec

2.1 Data Movement

A portal represents an opening in the address space of agstddther processes can use a portal to rgadl (vrite
(pud, or perform an atomic operation on the memory associatéddthve portal. Every data movement operation
involves two processes, thiitiator and thetarget Theinitiator is the process that initiates the data movement
operation. Theargetis the process that responds to the operation by acceptndgtia for goutoperation, replying
with the data for ggetoperation, or updating a memory location for, and potelgtiglsponding with the result from,
anatomicoperation.

In this discussion, activities attributed to a process nedgrrto activities that are actually performed by the preces
on behalf of the proces3 he inclusiveness of our terminology is important in thateat of application bypasdn
particular, when we note that thi@rgetsends a reply in the case of a get operation, it is possibteatreply will be
generated by another component in the system, bypassirgieation.

Figure2.1shows the graphical conventions used throughout this dentifsome of the data structures created
through the portals API reside in user space to enhancedlitgland peformance, while others are kept in protected
space for protection and to allow an implementation to pthese structures into host or NIC memory. We use colors
to distinguish between these elements.

— > Control path
I:' Internal data structure P

I:‘ Data structure in user space Event notification

|::) Data movement <> Match decision

Figure 2.1. Graphical Conventions: Symbols, colors, and stylistic conven-
tions used in the diagras of this document.

Figures2.2, 2.3, 2.4, and2.5 present graphical interpretations of the portals data meve operationsput(send),

get andatomic(atomic operation — swap is shown). In the case ptigoperation, thénitiator sends a put request

[0 message to th&arget Thetargettranslates the portal addressing information in the relquesg its local portals
structures. The data may be part of the same packet as thequétst or it may be in separate packet(s) as shown in
Figure2.2 The portals API does not specify a wire protocol (SecthihiVhen the datél has been put into the
remote memory descriptor (or been discarded) fdngetoptionally sends an acknowledgménimessage.

23

Initiator Target

Non-Matching
Portals Table

EQ
l l l l l l l Priority List

i
i

i

i

i _.| NI List

i Le | || |[Le | Entryae
i

i

i

i

Non-Matching NI

i
6] Put Request

LE LE LE

i
‘
i
i
i Matching Overflow List
Portals Table
i
! Matching NI
Matching
""" List
.

4

i
i i
Memory i i
Descriptor (MD) i @ i
i Data i]
Counter
i i
i

i
i

e |

! (optional) Acknowledgment

[T Ee] <
i
i

Priority List Overflow List

Figure 2.2. Portals Put (Send): Note that the put requeét is part of the
header and the dafa is part of the body of a single message. Depending on the
network hardware capabilities, the request and data may be sent inalangyg
packet or several smaller ones.

Figure2.2represents several important concepts in Portals 4.Q, Rirsessage that arrives on guteysicalinterface
can nonetheless target multiptgjical network interfaces. Figur2.2 shows amatchingand anon-matchinghetwork
interface, but a given network interface can alsologécal (rank) orphysical(nid/pid) identifiers to refer to network
endpoints (processes). As indicated in FigRi2 separate network interfaces have independent resour@g&n-f
they share a physical layer. The second important condagtrited in Figur®.2is that each portal table entry has
three data structures attached: an event queue, a pristitamd an overflow list. The final concept illustrated in
Figure2.2is that the overflow list is traversed after the priority.li§ta message does not match in the priority list
(matching interface) or it is empty (either interface), tverflow list is traversed.

Figure2.2illustrates another important Portals concept. The sgee®ortals data structures occupy is divided into
protected and application (user) space, while the large llsfters reside in user space. Most of the portals data
structures reside in protected space. Often the portatsat@tructures reside inside the operating system kemnel o
the network interface card. However, they can also resi@dilorary or another process. See implementation Bote
for possible locations of the event queues.

24

IMPLEMENTATION

Locationof eventqueuesandcounters
NOTE 5:

Note that data structures that can only be accessed through the API,
such as counters and event queues, are intended to reside in user
space. However, an implementatin is free to place them anywhere it
wants.

IMPLEMENTATION

Protectedspace
NOTE 6:

Protected space as shown for example in Figure 2.2 does not mean it
has to reside inside the kernel or a different address space. The portals
implementation must guarantee that no alterations of portals structures
by the user can harm another process or the portals implementation.

Figure2.3is a representation of getoperation from dargetthat does matching. The correspondgefrom a
non-matchingargetis shown in Figure?.4. First, theinitiator sends a request to thetarget As with theput
operation, theargettranslates the portals addressing information in the r&iqueeng its local portals structures.
Once it has translated the portals addressing informatiertargetsends aeply] that includes the requested data.

, '
Initiator | . Target
; i
i
i ! Matching
! @ i Portals Table
Get Request ,_NI INEN
‘ i [
Matching NI
'
M ! i
emory __
Descriptor (MD) i @ Reply i e
Data
‘ Counter
i
i
ME
‘ |
; i
I : : Priority List
; i

Figure 2.3. Portals Get from a match list entry.

We should note that portals address translations are onflgrpged on nodes that respond to operations initiated by
other nodes; i.e., target Acknowledgments foputoperations and replies wetandatomicoperations bypass the
portals address translation structures atithiator.

The third operationatomic(atomic operation), is depicted in Figu2esfor the swap operation and Figu2es for a
summation.

For the swap operation shown in Figué, theinitiator sends a request, containing theput data and the operand
valuell, to thetarget Thetargettraverses the local portals structures based on the infamia the request to find
the appropriate user buffer. Tih@rgetthen sends thgetdata in areplymessagé] back to thenitiator and deposits
the put data in the user buffer.

25

Initiator Target

Non-Matching
Portals Table

[TTTTTEe]

@ Get Request

T
NI

Non-Matching NI

Memory List Entry (LE)

Descriptor (MD) @ Reply Priority

List
M Data LE
i i A A

i i
i i
i i
i i Count
| |
i i
1T ee |

Figure 2.4. Portals Get from a list entry. Note that the first LE will be selected
to reply to thegetrequest.

Initiator Target
Matching
@ Swap request ,—| Portels Teble [IT1T eQ |
NI
Matching NI

Matching
List Entry (ME)

Operand

Memory

Descriptor (MD) H H

for put operation i @ Putdata
[

Memory \, |
Descriptor (MD) H 1
for get operation H ® Get data

Priority List Overflow List
[IITTT ea |

Figure 2.5. Portals Atomic (swap is shown) An atomic swap in memory
described by a match list entry using an initiator-side operand.

The sum operation shown in Figu2et adds the put data into the memory region described by therlisy. The
figure shows an optionalcknowledgmergent back. The result of the summation is not sent back, siedaitiator
usedPtlAtomic() instead ofPtiFetchAtomic() .

26

Initiator Target

Non-Matching
Portals Table

i i
i Atomic Sum Requést ,—|
i

i L=

Memory i ! Non-Matching NI __Counter

Descriptor(MD)
i i

. @ owm i
[>
[[List
; ; 1 Entry (LE)
i i
e ‘

(optional) AcknoWIedgment
T

i

MMM e | -
i
i

Figure 2.6. Portals Atomic (sum is shown) An atomic sum operation in
memory described by a list entry.

2.2 Portals Addressing

One-sided data movement models (e.g., shmeray Research, Inc. 1994T [Task Group of Technical Committee
T11 199§, and MPI-2 Message Passing Interface Forum 19®pically use a triple to address memory on a
remote node. This triple consists of a process identifiemorg buffer identifier, and offset. The process identifier
identifies thetargetprocess, the memory buffer identifier specifies the regianeory to be used for the operation,
and the offset specifies an offset within the memory buffer.

In addition to the standard address components (processfide memory buffer identifier, and offset), a portals
address can include information identifying tinéiator (source) of the message and a set of match bits. This
addressing model is appropriate for supporting one-sigedadions, as well as traditional two-sided message p@assin
operations. Specifically, the portals API provides the Haity needed for an efficient implementation of MPI-1,
which defines two-sided operations with one-sided congrietemantics.

Once the target buffer has been selected, the incoming gesasast pass a permissions check. The permissions
check isnota component of identifying the correct buffer. Itdely applied once the correct buffer has been
identified. The permissions check has two components: tidesef the message must be allowed to access this
buffer, and the operation type selected must be allowecdh Esteentry and match list entry has specifiers of which
types of operations are allowed — put and/or get — as welltagiea user ID or a job ID that can be used to identify
which initiators are allowed to access the buffer. A failuréhe permissions check does not modify the Portals state
in any way, except to update the status registers (see 8&ca).

Figures2.7and2.8 are graphical representation of the structures usedthygatin the interpretation of a portals
address. The node identifier is used to route the message &pgopriate node and is not reflected in this diagram.
The process IBprocess identifier is used to select the cortaagetprocess and the network interfaces it has
initialized. The network interface used by the initiatouged to select the correct portal table. There is one portal
table for each process and each interface initialized bytbeess; i.e., if a process initializes an interface for a
Myrinet and then initializes another interface for an Ettegy two portal tables will be created within that process,
one for each interface. Similarly, if one physical intedfdm@s been initialized as a matching interface and is later
initialized as a non-matching interface, each logicalrfiaige has an independent portal table. Fiquishows the

flow of addressing information in the case of an unmatchedvNile Figure2.8illustrates the case of a matched data

1A logical rank can be substituted for the combination of node ID and prod@sshen logical end-point addressing is used.

27

transfer.

The portal index is used to select an entry in the portal tdbéeh entry of the portal table identifies two lists and,
optionally, an event queue. The first list is a priority lisat is posted by the application to describe remotely
accessible address regions. If matching is enabled foretleeted network interface, each element of the priority lis
specifies two bit patterns: a set of “don’t care” bits and ao§é&must match” bits. Along with source node ID (NID)
and source process ID (PID), these bits are used in a mattimietion to select the correct match list entry. If
matching is not enabled, the first entry in the list is usede 3é&cond list associated with each portal table entry is an
overflow list. The overflow list maintains (loosely) the sasegnantics as the priority list. If the network interface
provides matching on the priority list, then it providesiit the overflow list. If the network interface is configured to
be non-matching, then the overflow list does not provide matc The overflow list is always traversafter the

priority list. It uses locally managed offsets to providgpase for the Portals implementation to store unexpected
messages, and any associated state that the implemermte&ors necessary. The application populates the overflow
list with either list entries (non-matching network intc€) or match list entries (matching network interface) tha
are used and then unlinked by the implementation. An ovelfiventry is notrequiredto have a buffer associated
with it, since the overflow list semantics allow the applicatto post a list entry that drops the body of messages;
however, if the portal table entry has enabled flow contr@ntexhaustion of the overflow list will lead to a
PTL_EVENT_PT_DI SABLED being posted at the target when a message arrives.

List entries identify a memory region as well as an optiomainting event. Matching list entries add a set of
matching criteria to this identifier. For both the list eafriand match list entries, the application can specify afset o
protection criteria. The protection criteria includes tyyee of operations allowed (put and/or get) as well as who is
allowed to access the buffer (either user ID, job ID, or a valdl). The memory region specifies the memory to be
used in the operation, and the counting event is used todé¢leroccurrence of operations. Information about the
operations is (optionally) recorded in the event queuehéd to the portal table entry.

length
heagder data Illllm

portal index

portal
index Priority List

Request |

NI l Unmatched
operation LE LE LE target

- i ; offset Region (UR)
operation Non-Matching NI Non-Matching length
initiator Portals Table user id
user id jobid
jobid
target
non-matching NI LE LE LE
portal index
offset
length
header data

Overflow List

count, or
length

Figure 2.7. Portals Non-Matching Addressing Structures: The example
shows the flow of information for an unmatched request at a targetiovdar
pieces of information from the incoming header flow to the portals strusture
where they are needed to process the request.

Figure2.9illustrates the steps involved in translating a portalsessiwhen matching is enabled, starting from the
first element in a priority list. If the match criteria speediin the match list entry are met, the permissions check
passes, and the match list entry accepts the opefattmmoperationfut get or atomid is performed using the

2Even if an incoming message matches the match criteria of a matanliry, the match list entry can reject operations becdwesenemory
region does not have sufficient space or the wrong operatiatiempted. See Secti8riLQ

28

initiator

match bits
[IITTTee] | start

fanath

_ en
Matching | heagder data

Portals Table portal index
portal
index initiator
Request [| match bits
NI operation
|—, offset
i length
operation Matching NI user id

initiator job id

user id
1o0ct
matching NI
portal index
match bits

e

header data

ME

ME

Matching
List Entry (ME)

count, or
length

Priority List Overflow List

Figure 2.8. Portals Matching Addressing Structures: The example shows
the flow of information for a matched request at a target. Various piefces
formation from the incoming header flow to the portals structures wheyeaitee
needed to process the request.

memory region specified in the match list entry. Note thataimag is done using the match bits, ignore bits, node
identifier, and process identifier.

If the match list entry specifies that it is to be unlinked lzhge themin_free semantic or if it is a use once match list
entry, the match list entry is removed from the match list| tire resources associated with the match list entry are
reclaimed. If there is an event queue specified in the patdétentry and the match list entry accepts the event, the
operation is logged in the event queue. An event is writtearwino more actions, as part of the current operation,
will be performed on this match list entry.

If the match criteria specified in the match list entry aremet, the address translation continues with the next match
list entry. In contrast, if the permissions check fails ar thatch list entry rejects the operation, the matching cease
and the message is dropped without modifying the list sthtke end of the priority list has been reached, the
address translation continues with the overflow list. Therfdow list contains a series of buffers provided by the host
for use by the implementation for messages that do not matiteipriority list. The Portals implementation can
capture the entire message, or any portion thereof allowdhddparameters of the match list entry. If a later match
list entry is posted that matches an item in the overflowtligt,implementation delivers an event
(PTL_EVENT_PUT_OVERFLOW to the application that includes a start address (whichbeaNULL) pointing to the
location of the message. If thkengthandmlengthin the event are equal, the start address must be a validssddre
indicating the location where the message arrived. Iftfiengthis less than thelength, the message was truncated.
This only occurs when the application has configured mastielitries to discard message bodies; thus, the
application is responsible for implementing the protoadessary to retrieve the message body. If the overflow list
does not have sulfficient space for the message, the incoemjugst is discarded andPaL _EVENT_DROPPED event is
posted to the event queue associated with the portal tabie en

Discussion While overflow list semantics are convenient for managing«peeted messages, they do
provide the potential for the implementation to push dataenwent onto the application when
unexpected messages arrive. This makes it difficult, parbapn impossible, for the implementation to

29

After node, process, matching
NI selection, and selecting
correct Portals table entry.

Matching
Start

Priority yes Overflow es i
o . N st y > discard
\/ message
empty? A empty?
no no
Y
post
get next dropped message
matching list entry event
Y
v increment
no drop count
get next
matching list entry
unlink ME? no
! perform
(min free, or i
operation
use once)
permissions © (V)
pass? N perform
7| operation unlink ME
yes
Increment ctr
Increment ctr
unlink ME? Y
(min free, or

use once)

Ptl entry has EQ
and events
are enabled?

unlink ME

N discard record event
7”1 message into EQ

increment permission
violations count

Figure 2.9. Matching Portals Address Translation.

know when the data movement associated with those messag@msipleted. While this does not change
the ordering semantics of Portals, it highlights a subtle&t can be easily overlooked: Portals only
guarantees that messaggartin order. Portals does not guarantee that messages compdetéer; thus,
aPtlGet() that follows aPtlPut() is not guaranteed to return the data delivered byprtirut() unless

other, higher level ordering semantics are enforced. 8igjlwhen data arrives in a region described by

30

a list entry that happens to overlap with a region describyea imemory descriptor with an active
operation, the ordering of data operations is undefineaa 3atnly available for transmit after the event
corresponding to the arriving message has been posted, tfiggered operations are safe, since they do
not trigger until the counting event is posted.

Non-matching
Start

After node, process,non-matching
NI selection, and selecting
correct Portals table entry.

no
discard
LE present?
message
Y
post
dropped message
event
permissions discard _ | increment permission
pass? message o violations count
increment
drop count
unlink LE? perform
(use once) operation

Ptl entry has EQ
and events
are enabled?

unlink LE

Increment ctr

record event
into EQ

Figure 2.10. Non-Matching Portals Address Translation.

Figure2.10shows the comparable figure for address translation on anmaiohing network interface. If matching is
disabled, the portals address translation is dramatisatiplified. The first list entry (LEalwaysmatches.
Authentication is provided through fields associated withltE and act apermissiorfields, which can cause the
operation to fail. An operation can fail to fit in the regioropided and, if so, will be truncated; however, other
semantics, such as locally managed offsets are not suppmrtthe priority list when matching is not enabled.
Locally managed offsets are always used in the overflowTisé overflow list is checked after the priority list, if
necessary. If no list entry is present, the message is disdand &TL_EVENT_DROPPED event is posted. The
non-matching translation path has the same event semastecsnatching interface. The important difference
between the non-matching interface and the matching atteris that the address translation semantics for the
non-matching interface (shown in Figu2eL0 have no loops. This allows fully pipelined operation foe th
non-matching address translation.

In typical scenarios, MPI uses the matching interface agdests full events in the event queue. SHMEM would use
the non-matching interface and request only counting evemenabled at the initiator and no events be delivered at
the target. In this mode, significantly lighter weight setizmcan be delivered for PGAS style messaging, while full

31

offloading and independent progress can be guaranteed for MP

IMPLEMENTATION

Overflowlist
NOTE 7: -

The overflow list can be managed in a number of ways; however, the
most obvious implementation would use a locally managed offset and
retain entire short messages or headers only for long messages (by
posting a match list entry without a buffer and setting it to truncate).
The implementation is neither required to or prohibited from using any
space provided by match list entries in the overflow list to store
message headers; however, the application is not required to provide
such space with a match list entry. Thus, the implementation must
have (or be able to acquire) state of its own. It may choose to augment
that state with the space provided with the match list entries to store
message headers. An implementation should never place information
relating to one message into two different list entries as this will bind
both entries until a matching match list entry is attached.

IMPLEMENTATION

Non-matchingaddresdranslation
NOTE 8:

A quality implementation would optimize for the common case of
always using the head of the list for non-matching address translation.
This could allow extremely high message rates for non-matching
operations.

2.3 Flow Control

Historically, on some large machines, MPI over Portals iasmto problems where the number of unexpected
messages has caused the exhaustion of event queue spacdfanduifer set aside for unexpected messages. While
this level of unexpected messages is an example of trulpkeiprogramming, nonetheless it is a behavior that
commercial MPI implementations encounter. In the pass, lths caused the loss of an event or a message and the
MPI application is lost. Users then complain. As an exampleowv other networks solve this issue, InfiniBand uses
“receiver not ready” NACKs and retransmits at the hardwavell Unfortunately, this is known to prohibit

parallelism in the NIC and is detrimental to InfiniBand penfiance in some areas.

In attempting to address this challenge, Portals adoptgtthesophy that such behavior will lead to extremely slow
application performance anyway. Thus, if the applicatianses exhaustion of resources, recovery from this
condition can be very slow. It must, however, be possibletover.

When resources are exhausted, whether they are user alloeatrirces like EQ entries or implementation level
resources, the implementation may choose to block new megsacessing for a constrained amount of time. If the
resources remain exhausted, the implementation mustidigebportal table entry and deliver an event to the
application. At this point, all messages targeting thatgldable entry for that process must be dropped until
PtIPTEnable() is called. Note that aeplydoes not target a portal table entry and is not dropped. litiaddthe
PTL_EVENT_SEND event associated with that message (and subsequent innfleggtages) fails with an appropriate
indication in theni_fail typevariable. The application (e.g. MPI library) must then useeond portal table entry to
recover from the overflow. Recovery is painful — the user naqusésce the library (e.g. MPI), ensure that resources
are available, re-enable the portal table entry, and rtestarmunications. Quiescing the library requires the MPI
libraray to insure that no more messages are in flight targetie node that has experienced resource exhaustion.
Making resources available involves draining all everisifthe event queue associated with the portal table entry,

32

replenishing the user allocated buffers on the overflowadistl draining unexpected messages from the Portals
implementation.

2.4 Multi-Threaded Applications

The portals API supports a generic view of multi-threadegliaptions. From the perspective of the portals API, an
application program is defined by a set of processes. Eadegsalefines a unique address space. The portals API
defines access to this address space from other procesisgsotals addressing and the data movement
operations). A process may have one or nthreadsexecuting in its address space.

With the exception oPtIEQWait() and possiblyPtIEQPoll() , every function in the portals APl is non-blocking and
atomic with respect to both other threads and external tipasathat result from data movement operations. While
individual operations are atomic, sequences of these tipesanay be interleaved between different threads and
with external operations. The portals APl does not provigderaechanisms to control this interleaving. It is expected
that these mechanisms will be provided by the API used tadetbaeads.

2.5 Usage

Some of the diagrams presented in this chapter may seemimganfirst sight. However, many of the diagrams
show all possible options and features of the Portals mgldiocks. In actual use, only some of them are needed to
accomplish a given function. Rarely will they all be activelaised at the same time.

Figure2.2shows the complete set of options available fauéoperation. In practice, a diagram like Fig@rd 1is

much more realistic. It shows the Portals structures usedtigp a one-sidegdutoperation. A user of Portals needs

to specify an initiator region where the data is to be takemfrand an unmatched target region to put the data.
Offsets can be used to address portions of each regionaeagrd at a time, and an event queue or an event counter
inform the user when an individual transfer has completed.

Another example is Figur2.6 which is simpler than Figurg.5and probably more likely to be used. Atomic
operations, such as the one in Fig@ré are much more likely to use a single unmatched target re§ooh simple
constructs can be used to implement global reference cayoteaccess locks.

33

Initiator Target

Non-Matching

i i
i i
: ! Portals Table
i i
i i
Memory ! Put Request H List Entry (LE)
Descriptor (MD) ; ; NI

i [L
i i
: : Non-Matching NI
i i
i i
i Data i
T T
i i
i i
i i
i i
i i
i i
i i

\ i :
i i

I l |
i i

Figure 2.11. Simple Put Example: Not every option or Portals features is
needed to accomplish simple tasks such as the transfer of data from aefinitia
region to a target region.

34

Chapter 3

The Portals API

3.1 Naming Conventions and Typeface Usage

The portals API defines four types of entities: functionpgty, return codes, and constants. Functions always start
with Ptl and use mixed upper and lower case. When used in the body eéfiogt, function names appear in sans
serif bold face, e.gRtlinit() . The functions associated with an object type will have rathat start wittPtl,

followed by the two letter object type code shown in colupynin Table3.1 As an example, the function
PHIEQAIloc() allocates resources for an event queue.

Table 3.1. Object Type Codes.

yy xx | Name Section
NI ni | Network Interface 3.5

PT pt | Portal Table Entry 3.6

LE le | ListEntry 3.11
ME me | Matching list Entry 3.12
MD md | Memory Descriptor 3.10
EQ eq | Event Queue 3.13
CT ct | Count 3.14

Type names use lower case with underscores to separate. iE@cis type name starts wighl_ and ends witht.
When used in the body of this report, type names appear likegdthimatch_bits t.

Return codes start with the characte _ and appear like this?TL _OK.

Names for constants use upper case with underscores t@gepards. Each constant name starts With_. When
used in the body of this report, constant names appear ligeRFL_ACK_REQ

The definition of named constants, function prototypes,tgpd definitions must be supplied in a file named
port al s4. h that can be included by programs using portals.

IMPLEMENTATION

README andportals4.h
NOTE 9:

Each implementation must supply an include file named port al s4. h
with the definitions specified in this document. There should also be a
README file that explains implementation specific details. For
example, it should list the limits (Section 3.5.1) for this implementation
and provide a list of status registers that are provided (Section 3.2.7).
See Appendix C for a template.

35

3.2 Base Types

The portals API defines a variety of base types. These typesgent a simple renaming of the base types provided
by the C programming language. In most cases these new typesrtzave been introduced to improve type safety
and to avoid issues arising from differences in represiemtaizes (e.g., 16-bit or 32-bit integers). TaBl8lists all

the types defined by Portals.

3.2.1 Sizes

The typeptl sizet is an unsigned 64-bit integral type used for representingssi

3.2.2 Handles

Objects maintained by the API are accessed through hartdideslle types have names of the form

pt| _handl e _xx_t, wherexx is one of the two letter object type codes shown in Tablecolumnxx. For example,

the typeptl _handle_ni_t is used for network interface handles. Like all portals gyfibeir names use lower case letters
and underscores are used to separate words.

Each type of object is given a unique handle type to enhamedliecking. The typgtl _handle_any_t can be used
when a generic handle is needed. Every handle value can kertehinto a value of typptl _handle_any_t without
loss of information.

Handles are not simple values. Every portals object is &ssacwith a specific network interface and an identifier
for this interface (along with an object identifier) is pafttoe object handle.

IMPLEMENTATION

Networkinterfaceencodedn handle
NOTE 10:

Each handle must encode the network interface it is associated with.

| MPLEMENTATION

NOTE 11- Sizeof handletypes

It is highly recommended that a handle type should be no larger than
the native machine word size.

The constanPTL_EQ NONE, of typeptl_handle_eq t, is used to indicate the absence of an event queue. Simiflagly
constanPTL_CT_NONE, of typeptl _handle_ct_t, indicates the absence of a counting type event. See S&fiOrifor
uses of these values. The special cons®ahtl NVALI D_.HANDLE is used to represent an invalid handle.

3.2.3 Indexes

The typeptl _pt_index_t is an integral type used for representing portal table inde$ee Sectiod.5.1and3.5.2for
limits on values of this type.

3.2.4 Match Bits

The typeptl_match_bits_t is capable of holding unsigned 64-bit integer values.

36

3.2.5 Network Interfaces

The typeptl_interface_t is an integral type used for identifying different netwonkdrfaces. Users will need to consult
the implementation documentation to determine apprapxiatues for the interfaces available. The special constant
PTL_| FACE_DEFAULT identifies the default interface.

3.2.6 Identifiers

The typeptl_nid_t is an integral type used for representing node identifiedgérpid_t is an integral type for
representing process identifiers when physical addressimged in the network interfac8TL_N _PHYSI CAL is set
for the network interface). IPTL_NI _LOG CAL is set, arank (ptl _rank _t) is used insteachtl _uid_t is an integral type
for representing user identifiers, apitl jid _t is an integral type for representing job identifiers.

The special valueBTL Pl D_.ANY matches any process identifiefL_NI D_.ANY matches any node identifier,
PTL_RANK_ANY matches any ranieTL_Ul D_ANY matches any user identifier, aR@lL _JI D_ANY matches any job
identifier. See SectioB.11and3.12for uses of these values.

3.2.7 Status Registers

Each network interface maintains an array of status ragiitat can be accessed using BtiliStatus() function
(Section3.5.4. The typeptl _sr_index_t defines the types of indexes that can be used to access e registers.
Only two indexes are defined for all implementatioR$L _SR_DROP_COUNT, which identifies the status register that
counts the dropped requests for the interface, RAMdSR_PERM SSI ONS_VI OLATI ONS, which counts the number of
attempted permission violations. Other indexes (and t@gismay be defined by the implementation.

The typeptl _sr_value_t defines the types of values held in status registers. Thisigned integer type. The size is
implementation dependent but must be at least 32 bits.

3.3 Return Codes

The API specifies return codes that indicate success ordailiua function call. In the case where the failure is due to
invalid arguments being passed into the function, the exaleavior of an implementation is undefined. The API
suggests error codes that provide more detail about spawiéiid parameters, but an implementation is not required
to return these specific error codes. For example, an implttien is free to allow the caller to fault when given an
invalid address, rather than ret®mL _SEGV. In addition, an implementation is free to map these retodes to
standard return codes where appropriate. For example ux kigrnel-space implementation could map portals return
codes to POSIX-compliant return codes. Tablists all return codes used by Portals.

3.4 Initialization and Cleanup

The portals APl includes a functioRtlinit() , to initialize the library and a functiomtiFini() , to clean up after the
process is done using the library. The initialization stdtPortals is reference counted so that repeated calls to
Ptlinit() andPtlFini() within a process (collection of threads) behave properly.

A child process does not inherit any portals resources ftemparent. A child process must initialize Portals in order
to obtain new, valid portals resources. If a child proceas fa initialize Portals, behavior is undefined for both the
parent and the child.

37

3.4.1 Ptlinit

ThePtlinit() function initializes the portals librarytlinit() must be called at least once by a process before any
thread makes a portals function call but may be safely cafiece than once. Each call Rilinit() increments a
reference count.

Function Prototype for PtlInit

int Ptlinit (void);

Return Codes

PTL_OK Indicates success.

PTL _FAIL Indicates an error during initialization.

IMPLEMENTATION Supportin fork[}
NOTE 12:
If an implementation wants to support fork(), it must detect when
Ptlinit() is being called from a new process context and re-initialize the

state of the Portals library.

3.4.2 PtlFini

ThePtlIFini() function allows an application to clean up after the poriblisry is no longer needed by a process.

Each call toPtIFini() decrements the reference count that was increment@dibig() . When the reference count
reaches zero, all portals resources are freed. Once thepmsources are freed, calls to any of the functions defined
by the portals API or use of the structures set up by the ARl will result in undefined behavior. Each call to
Ptlinit() should be matched by a correspondintini() .

Function Prototype for PtlFini

void PtIFini (void);

3.5 Network Interfaces

The portals API supports the use of multiple network integfa However, each interface is treated as an independent
entity. Combining interfaces (e.g., “bonding” to createghler bandwidth connection) must be implemented by the
process or embedded in the underlying network. Interfacet@ated as independent entities to make it easier to
cache information on individual network interface carasatidition to supporting physical interfaces, each network
interface can be initialized to provide either matching onimatching portals addressing and either logical or
physical addressing of network end-points through the aetegement calls. These two options are independent
(providing the full cross-product of possibilities) and shbe provided for each physical interface such that a

physical interface can be opened as four logical interfaces

38

IMPLEMENTATION

Logical networkinterfaces
NOTE 13: 9

A logical interface is very similar to a physical interface. Like a physical
interface, a logical interface is a “well known” interface — i.e. itis a
specific physical interface with a specific set of properties. One
additional burden placed on the implementation is the need for the
initiator to place 2 bits in the message header to identify to the target
the logical interface on which this message was sent. In addition, all
logical interfaces associated with a single physical interface must share
a single node ID and Portals process ID.

Once initialized, each logical interface provides a pddale and a collection of status registers. In order to ifaté
the development of portable portals applications, a canpiimplementation must provide at least 64 portal table
entries. See Sectidh12for a discussion of updating portal table entries usingPif@EAppend() function. See
Section3.5.4for a discussion of thetINIStatus() function, which can be used to read the value of a statusteegis

Every other type of portals object (e.g., memory descrjeent queue, or match list entry) is associated with a
specific logical network interface. The association to édaighetwork interface is established when the object is
created and is encoded in the handle for the object.

Each logical network interface is initialized and shut daneiependently. The initialization routinBtINlinit() ,

returns a an interface object handle which is used in alleylsnt portals operations. TRe&NIFini() function is used

to shut down a logical interface and release any resoure¢aitb associated with the interface. Network interface
handles are associated with processes, not threads. édldkiin a process share all of the network interface handles.

Discussion Proper initialization of a logical network interface tha&s logical-end point addressing
requires the user to pass in a requested mapping of logiolikto physical node IDs and process IDs.

To obtain this mapping, the process must first initializegidal network interface that uses physical
end-point addressing. The logical network interface tlsasiphysical end-point addressing can be used
to exchange a NID/PID map or the NID/PID map can be retrieveghfa run-time system.

The portals API also defines tiNIStatus() function (SectiorB.5.4 to query the status registers for a logical
network interface, and thetINIHandle() function (Sectior8.5.5 to determine the logical network interface with
which an object is associated.

39

3.5.1 The Network Interface Limits Type

The functionPtINIInit() accepts a pointer to a structure of desired limits and caa &tructure with the actual values
supported by the network interface. The two lists are of pth@i_limits t and include the following members:

typedef struct {
int maxmes
int maxmds
int maxcts,
int maxeqs
int maxpt.index;
int maxiovecs
int maxmelist;
ptl_sizet maxmsgsize
ptl_sizet maxatomicsize
}optlonilimits t

Limits
maxmes
maxmds

maxeqs

maxcts

maxptindex

max.iovecs
maxmelist

maxmsgsize

maxatomicsize

3.5.2 PtINIInit

Maximum number of match list entries that can be allocatexhgitone
time.

Maximum number of memory descriptors that can be allocatedy
one time.

Maximum number of event queues that can be allocated at anjiroe.

Maximum number of counting events that can be allocatedyabaa
time.

Largest portal table index for this interface, valid indexange from 0 to
maxpt.index inclusive. An interface must havenaax pt.indexof at
least 63.

Maximum number of I/O vectors for a single memory descrifbothis
interface.

Maximum number of match list entries that can be attachedyartal
table index.

Maximum size (in bytes) of a messagrif get or reply).

Maximum size (in bytes) of an atomic operation.

ThePtINIInit() function initializes the portals API for a network interéa(NI). A process using portals must call this
function at least once before any other functions that afptizat interface. For subsequent call$tiNlinit() from
within the same process (either by different threads or éineesthread), the desired limits will be ignored and the call
will return the existing network interface handle and thiuatlimits. Calls toPtINIInit() increment a reference count
on the network interface and must be matched by a c&titaFini() .

40

Function Prototype for PtINIInit

int PtINIInit (ptl_interface_t iface,
unsigned int options,
ptl _pid _t pid,
ptl _ni_limits _t xdesired,
ptl _ni_limits _t xactual,
ptl _sizet mapsize
ptl _processid_t *desiredmapping
ptl _processid _t *actualmapping
ptl _handle_ni_t *ni_handle);
Arguments
iface input Identifies the network interface to be initialized. (Seet®ec3.2.5for a
discussion of values used to identify network interfaces.)
options input This field contains options that are requested for the nétimberface. Values
for this argument can be constructed using a bitwise OR ofahees defined
below. EithePTL_NI _MATCHI NG or PTL_NI _NO_MATCHI NG must be set, but not
both. EitherPTL_NI _LOG CAL or PTL_NI _PHYSI CAL must be set, but not both.
pid input Identifies the desired process identifier (for well knowngess identifiers).
The valuePTL_PI D_.ANY may be used to let the portals library select a process
identifier.
desired input If not NULL, points to a structure that holds the desired limits.
actual output If not NULL, on successful return, the location pointed to by actudltvaild
the actual limits.
mapsize input Contains the size of the map being passed in (zero for NULhs field is
ignored if thePTL_NI _LOG CAL option is not set.
desiredmapping input If not NULL, points to an array of structures that holds the desired mgpy
logical indentifiers to NID/PID pairs. This field is ignorefthe
PTL_NI _LOd CAL option is not set.
actualmapping output Ifthe PTL_NI _LOG CAL option is set, on successful return, the location pointed
to by actualmappingwill hold the actual mapping of logical identifiers to
NID/PID pairs.
ni_handle output On successful return, this location will hold a the inteefé@ndle.
options

PTL_NI _MATCHI NG

PTL_NI _NO_MATCHI NG

PTL_NI _LOG CAL

PTL_NI _PHYSI CAL

Request that the interface specifiedfatebe opened with matching
enabled.

Request that the interface specifiedfate be opened with matching
disabled PTL_NI _MATCHI NGandPTL_NI _NO_MATCHI NG are mutually
exclusive.

Request that the interface specifiedfatebe opened with logical
end-point addressing (e.g. MPI communicator and rank or ENINPE).

Request that the interface specifiedfate be opened with physical
end-point addressing (e.g. NID/PIPTL_NI _LOd CAL and
PTL_NI _PHYSI CAL are mutually exclusive.

41

Discussion The use oflesiredis implementation dependent. In particular, an implemtémanay
choose to ignore this argument

Discussion Each interface has its own sets of limits. In implementatithat support multiple
interfaces, the limits passed to and returne@®Mlinit() apply only to the interface specifiedifiace.

The desired limits are used to offer a hint to an implemeaitiadis to the amount of resources needed, and the
implementation returns the actual limits available for.Usghe case where an implementation does not have any
pre-defined limits, it is free to return the largest possialie permitted by the corresponding type (eNgT,_MAX).

A quality implementation will enforce the limits that ardumed and take the appropriate action when limits are
exceeded, such as using tiEL _NO_SPACE return code. The caller is permitted to use maximum valuethfo
desired fields to indicate that the limit should be determimg the implementation.

Return Codes

PTL _OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.

PTL _IFACE _INVALID Indicates thatfaceis not a valid network interface.

PTL _PID_INVALID Indicates thapid is not a valid process identifier.

PTL_PID_INUSE Indicates thapid is currently in use.

PTL_SEGV Indicates thatctualor ni_handleis not NULL or a legal address, or thégesiredis not

NULL and does not point to a valid address.

IMPLEMENTATION

NOTE 14: Multiple callsto PtINIInit()

If PtINIInit() gets called more than once per logical interface, then the
implementation should fill in actual, actual_mapping and ni_handle. It
should ignore pid. PtIGetld() (Section 3.8) can be used to retrieve the
pid.

42

3.5.3 PtINIFini

ThePtINIFini() function is used to release the resources allocated foveonetnterface. The release of network
interface resources is based on a reference count tharéeated byPtiNIInit() and decremented IBtINIFini() .
Resources can only be released when the reference couhesezaro. Once the release of resources has begun, the
results of pending API operations (e.g., operations itgitldy another thread) for this interface are undefined.
Similarly, the effects of incoming operationsu get atomiq or return valuesgcknowledgmerdndreply) for this
interface are undefined.

Function Prototype for PtINIFini

int PtINIFini (ptl_handle_ni_t ni_handle);
Arguments
ni_handle input An interface handle to shut down.

Return Codes

PTL_OK Indicates success.
PTL_NO.INIT Indicates that the portals APl has not been successfutiglizid.
PTL_NI_INVALID Indicates thahi_handleis not a valid network interface handle.

3.5.4 PtINIStatus

ThePtINIStatus() function returns the value of a status register for the $igecinterface. (See Secti@?2.7for
more information on status register indexes and statusteggialues.)

Function Prototype for PtINIStatus

int PtINIStatus ptl_handle_ni_t ni_handle,
ptl _sr_index_t statusregister
ptl _sr_value_t xstatus);
Arguments

ni_handle input An interface handle

statusregister input The index of the status register

status output On successful return, this location will hold the curreritiesof the status

register.

Discussion Only two status registers are currently required: a dromtoegister
(PTL_SR_DROP_COUNT) and an attempted permissions violation register
(PTL_SR_PERM SSI ONS_VI OLATI ONS). Implementations may define additional status registers.

43

Identifiers for the indexes associated with these registevald start with the prefilRrTL_SR_.

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglizid.
PTL _NI_INVALID Indicates thahi_handleis not a valid network interface handle.
PTL_SR.INDEX _INVALID Indicates thastatusregisteris not a valid status register.

PTL _SEGV Indicates thastatusis not a legal address.

3.5.5 PtINIHandle

ThePtiNIHandle() function returns the network interface handle with which tibject identified byandleis
associated. If the object identified bgndleis a network interface, this function returns the same vilisgpassed.

Function Prototype for PtINIHandle

int PtINIHandlegtl_handle_any_t handle

ptl _handle_ni_t *ni_handle);
Arguments
handle input The object handle.
ni_handle output On successful return, this location will hold the networteiface handle

associated witlhandle

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL _HANDLE _INVALID Indicates thahandleis not a valid handle.

PTL_SEGV Indicates thahi_handleis not a legal address.

IMPLEMENTATION

NOTE 15° Objectencodingin handle

Every handle should encode the network interface and the object
identifier relative to this handle.

44

3.6 Portal Table

Entries

A portal index refers to a portal table entry. The assignnoéitiese indexes can either be statically or dynamically
managed, and will typically be a combination of both. A pbiddle entry must be allocated before being used.

3.6.1 PtlIPTAlloc

ThePtlPTAlloc() function allocates a portal table entry and sets flags thegt pptions to the implementation.

Function Prototype for PtIPTAlloc

int PtIPTAlloc(ptl_handle_ni_t ni_handle,
unsigned int options,
ptl_handle_eqt eqghandle
ptl _pt_index_t ptindexreq ,
ptl _pt_index_t *ptindex);
Arguments
ni_handle input The interface handle to use.
options input This field contains options that are requested for the portix. Values for
this argument can be constructed using a bitwise OR of theesalefined
below.
eghandle input The event queue handle used to log the operations performetitch list
entries attached to the portal table entry. Elghandleattached to a portal
table entry must refer to an event queue contaipihgarget_eventt type
events. If this argument BTL_EQ NONE, operations performed on this portal
table entry are not logged.
ptindexreq input The value of the portal index that is requested. If the vaduset to
PTL_PT_ANY, the implementation can return any portal index.
ptindex output On successful return, this location will hold the portalérdhat has been
allocated.
options

PTL_PT_ONLY_USE_ONCE

PTL_PT_FLONCONTROL

Return Codes

PTL_OK
PTL _NI_INVALID
PTL_NO_INIT

Hint to the underlying implementation that all entries eftted to this
portal table entry will have thBTL _ME_USE_ONCE or PTL_LE_USE_ONCE
option set.

Enable flow control on this portal table entry (see Sec#@).

Indicates success.

Indicates thaifaceis not a valid network interface handle.

Indicates that the portals APl has not been successfutiglized.

45

PTL_PT_FULL
PTL_PT_IN_USE
PTL_PT_EQ_-NEEDED

3.6.2 PtIPTFree

Indicates that there are no free entries in the portal table.
Indicates that the Portal table entry requested is in use.
Indicates that flow control is enabled and there is no EQ lagighc

ThePtlPTFree() function releases the resources associated with a pdoteleatry.

Function Prototype for PtIPTFree

int PtIPTFree(ptl _handleni_t ni_handle,
ptl _pt_index_t ptindex);
Arguments
ni_handle input The interface handle on which tipéindexshould be freed.

ptindex

Return Codes

PTL_OK

PTL_NO_INIT
PTL_PT_INDEX _INVALID
PTL_PT_IN_USE
PTL_NI_INVALID

3.6.3 PtlIPTDisable

input The portal index that is to be freed.

Indicates success.

Indicates that the portals APl has not been successfutiglized.

Indicates thapt indexis not a valid portal table index.

Indicates thapt indexis currently in use (e.g. a match list entry is still attached
Indicates thahi_handleis not a valid network interface handle.

ThePtlPTDisable() function indicates to an implementation that no new messageuld be accepted on that portal
table entry. The function blocks until the portal table grstiatus has been updated, all messages being actively
processed are completed, and all events are posted.

Function Prototype for PtIPTDisable

int PtIPTDisableptl_handle.ni_it ni_handle,
ptl _pt_index_t ptindex);

Arguments

ni_handle
ptindex

input The interface handle to use.

input The portal index that is to be disable.

46

Return Codes

PTL_OK Indicates success.
PTL _NI_INVALID Indicates thaifaceis not a valid network interface handle.
PTL _NO.INIT Indicates that the portals APl has not been successfutiglized.

Discussion After successful completion, no other messages will be@edeon this portal table entry
and no more events associated with this portal table enthpedelivered. Replies arriving at this
initiator will continue to succeed.

3.6.4 PtIPTEnable

ThePtIPTEnable() function indicates to an implementation that a previoussalled portal table entry should be
re-enabled. This is used to enable portal table entriessbisd automatically or manually disabled. The function
blocks until the portal table entry status has been updated.

Function Prototype for PtIPTEnable

int PtIPTEnablegdtl_handle_ni_t ni_handle,
ptl _pt_index_t ptindex);

Arguments
ni_handle input The interface handle to use.
ptindex input The value of the portal index to enable.

Return Codes

PTL_OK Indicates success.
PTL _NI_INVALID Indicates thaifaceis not a valid network interface handle.
PTL_NO_INIT Indicates that the portals APl has not been successfutiglized.

3.7 User ldentification

Every process runs on behalf of a user. User identifiersitimatke trusted portion of the header of a portals message.
They can be used at thiargetto limit access via access controls (Sect®hland Sectior8.12).

3.7.1 PtlGetUid

ThePtiGetUid() function is used to retrieve the user identifier of a process.

47

Function Prototype for PtiGetUid

int PtIGetUid(ptl _handle_ni_t ni_handle,
ptl _uid _t *Uuid);
Arguments
ni_handle input A network interface handle.
uid output On successful return, this location will hold the user identfor the calling
process.

Return Codes

PTL_OK Indicates success.

PTL _NI_INVALID Indicates thahi_handleis not a valid network interface handle.
PTL _NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL_SEGV Indicates thatiid is not a legal address.

3.8 Process ldentification

Processes that use the portals API can be identified usindeaidentifier and process identifier. Every node
accessible through a network interface has a unique nodéfideand every process running on a node has a unique
process identifier. As such, any process in the computingisysan be uniquely identified by its node identifier and
process identifier. The node identifier and process identifis be aggregated by the application into a rank, which is
translated by the implementation into a network identifiedt process identifier.

The portals API defines a typgt] processid_t, for representing process identifiers, and a functRigetld() , which

can be used to obtain the identifier of the current process.

Discussion The portals API does not include thread identifiers. Message delivered to processes
(address spaces) not threads (contexts of execution).

3.8.1 The Process ldentification Type

Theptl_processid_t type is a union that can represent the a node as either a phgdidress or a logical address
within the machine. The physical address uses two idergif@erepresent a process identifier: a node identifigr
and a process identifigid. In turn, a logical address uses a logical index within agiation table specified by the
application (theank) to identify another process.

48

typedef union {
struct {
ptl_nid_t nid;
ptl_pid_t pid;
} phys;
ptl_rank -t rank;
} ptl_processid_t ;

3.8.2 PtlGetld

Function Prototype for PtiGetld

int PtlGetld (ptl _handle_ni_t ni_handle,
ptl _processid _t *id);
Arguments
ni_handle input A network interface handle.
id output On successful return, this location will hold the identifier the calling
process.

Discussion Note that process identifiers and ranks are dependent oretherk interface(s). In
particular, if a node has multiple interfaces, it may havatiple process identifiers and multiple ranks.

Return Codes

PTL_OK Indicates success.

PTL _NI_INVALID Indicates thahi_handleis not a valid network interface handle.
PTL _NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL_SEGV Indicates thatd is not a legal address.

3.9 Process Aggregation

It is useful in the context of a parallel machine to represdirif the processes in a parallel job through an aggregate
identifier. The portals API provides a mechanism for suppgrsuch job identifiers for these systems. In order to be
fully supported, job identifiers must be included as a trdigi@rt of a message header.

The job identifier is an opaque identifier shared betweerf #fleodistributed processes of an application running on a
parallel machine. All application processes and job-dfmesiipport programs, such as the parallel job launchergshar
the same job identifier. This identifier is assigned by theinum system upon job launch and is guaranteed to be
unique among application jobs currently running on therertistributed system. An individual serial process may
be assigned a job identifier that is not shared with any ottmrgsses in the system or can be assigned the constant
PTL_JI D_NONE.

49

3.9.1 PtlGetdid

Function Prototype for PtiGetJid

int PtIGetJid tl _handle_ni_t ni_handle,
ptl_jid _t *jid);
Arguments
ni_handle input A network interface handle.
jid output On successful return, this location will hold the job idégtifor the calling
processPTL_JI D_.NONE may be returned for a serial job, if a job identifier is not
assigned.

Return Codes

PTL_OK Indicates success.

PTL_NI_INVALID Indicates theni_handleis not a valid network interface handle.
PTL_NO.INIT Indicates that the portals API has not been successfutiglized.
PTL_SEGV Indicates thajid is not a legal address.

Discussion The notion of a job identifier is fairly closely tied to a ruime system. It is expected that
the run-time system will set this value. For implementagiasithout a run-time syster®TL _J| D_.NONE
may be assigned. It would probably be a bad idea to use job ilbase systems for access control.

3.10 Memory Descriptors

A memory descriptor contains information about a region pfaess’ memory and optionally points to an event
gueue where information about the operations performeti@miemory descriptor are recorded. Memory
descriptors are initiator side resources that are useddapsulate an association with a network interface (NI) with
description of a memory region. They provide an interfacestiister memory (for operating systems that require it)
and to carry that information across multiple operatiomsNiD is persistent until release®tIMDBIind() is used to
create a memory descriptor artiMDRelease() is used to unlink and release the resources associated wiémery
descriptor.

3.10.1 The Memory Descriptor Type

Theptl_md_t type defines the visible parts of a memory descriptor. Vahidhis type are used to initialize the
memory descriptors.

50

typedef struct {
void xStart ;
ptl _sizet length;
unsigned int options;
ptl_handle_eq.t eqghandlg
ptl_handle_ct .t cthandle;
} ptl_md_t;

Members

start, length

options

PTL_VMD_EVENT _DI SABLE
PTL_MD_EVENT _SUCCESS_DI SABLE

PTL_MD_EVENT _CT_SEND
PTL_VD_EVENT _CT_REPLY
PTL_MD_EVENT_CT_ACK
PTL_VD_UNORDERED

PTL_VMD_REMOTE_FAI LURE_DI SABLE

PTL_I OVEC

eg.handle

ct.handle

Specify the memory region associated with the memory dascriThe
startmember specifies the starting address for the memory regin a
thelengthmember specifies the length of the region. There are no
alignment restrictions on the starting address or the feafjthe region;
although unaligned messages may be slower (i.e., lowendtid
and/or longer latency) on some implementations.

Specifies the behavior of the memory descriptor. Optionsidecthe use
of scatter/gather vectors and disabling of end events egedanith this
memory descriptor. Values for this argument can be consdugsing a
bitwise OR of the following values:

Specifies that this memory descriptor should not generastsy

Specifies that this memory descriptor should not generaetevhat
indicate success. This is useful in scenarios where thécapiph does
not need normal events, but does require failure informatcenhance
reliability.

Enable the counting dITL_EVENT_SEND events.

Enable the counting GfTL_EVENT_REPLY events.

Enable the counting (ITL_EVENT _ACK events.

Indicate to the Portals implementation that messages santthis
memory descriptor do not have to arrive at the target in order

Indicate to the Portals implementation that failures ragginotification
from the target should not be delivered to the local appbeatThis
prevents the local events (e R.L_EVENT_SEND) from having to wait for
a round-trip notification before delivery.

Specifies that thet art argument is a pointer to an array of type
ptl_iovect (Section3.10.2 and the engt h argument is the length of the
array ofptl _iovect elements. This allows for a scatter/gather capability
for memory descriptors. A scatter/gather memory desariptbaves
exactly as a memory descriptor that describes a singlealiytu
contiguous region of memory.

The event queue handle used to log the operations performtto
memory region. If this argument FTL_EQ NONE, operations performed
on this memory descriptor are not logged.

A handle for counting type events associated with the memegipn. If
this argument i®TL_CT_NONE, operations performed on this memory
descriptor are not counted.

51

3.10.2 The I/O Vector Type

Theptl _iovect type is used to describe scatter/gather buffers of a matariry or memory descriptor in conjunction
with the PTL_| OVEC option. Theptl iovect type is intended to be a type definition of thte uct i ovec type on
systems that already support this type.

typedef struct {
void *jov_base
ptl_sizet iov_len;
} ptl_iovect ;
Members
iov_base The byte aligned start address of the vector element
iov_len The length (in bytes) of the vector element

Discussion Performance conscious users should not mix offsets (laa&mote) withptl_iovect .
While this is asupportecoperation, it is unlikely to perform well in most implemetitas.

IMPLEMENTATION

NOTE 16 Supportof I/0 Vector Type andOffset

The implementation is required to support the mixing of the ptl _iovec _t
type with offsets (local and remote); however, it will be difficult to make
this perform well in the general case. The correct behavior in this
scenario is to treat the region described by the ptl _iovec _t type as if it
were a single contiguous region. In some cases, this may require
walking the entire scatter/gather list to find the correct location for
depositing the data.

3.10.3 PtIMDBInd

ThePtIMDBInd() operation is used to create a memory descriptor to be usdtklayitiator. On systems that require
memory registration, thetiMDBind() operation would invoke the appropriate memory registrefimctions.

Function Prototype for PtIMDBIind

int PtIMDBIind(ptl _handle_ni_t ni_handle,
ptl_md_t md,
ptl _handle_.md_t *md.handlg;
Arguments
ni_handle input The network interface handle with which the memory desoripiill be
associated.

52

md

md.handle

Return Codes

PTL_OK
PTL_NO_INIT

PTL _NI_INVALID
PTL_MD _ILLEGAL

PTL_EQ-INVALID
PTL_CT_INVALID
PTL_NO_SPACE
PTL_SEGV

3.10.4 PtIMDRelease

input Provides initial values for the user-visible parts of a mepaescriptor. Other
than its use for initialization, there is no linkage betwégis structure and the
memory descriptor maintained by the API.

output On successful return, this location will hold the newly ¢degememory
descriptor handle. Thexd handleargument must be a valid address and cannot
beNULL.

Indicates success.
Indicates that the portals API has not been successfutiglizied.
Indicates thahi_handleis not a valid network interface handle.

Indicates thaindis not a legal memory descriptor. This may happen because the
memory region defined imdis invalid or because the network interface associated with
theeqg handleor thect_ handlein mdis not the same as the network interfacehandle

Indicates that the event queue associated withs not valid.

Indicates that the counting event associated withis not valid.

Indicates that there is insufficient memory to allocate tleeory descriptor.
Indicates thatnd handleis not a legal address.

ThePtIMDRelease() function releases the internal resources associated witdaory descriptor. (This function
does not free the memory region associated with the memacrigéor; i.e., the memory the user allocated for this
memory descriptor.) Only memory descriptors with no pegdiperations may be unlinked.

| MPLEMENTATION
NOTE 17:

Uniguememorydescriptothandles

An implementation will be greatly simplified if the encoding of memory
descriptor handles does not get reused. This makes debugging easier,
and it avoids race conditions between threads calling PtIMDRelease()

and PtIMDBInd() .

Function Prototype for PtIMDRelease

int PtIMDReleasqgtl _handle.md_t md handlé;

Arguments

md.handle

Return Codes

input The memory descriptor handle to be released.

53

PTL_OK Indicates success.

PTL_NO._INIT Indicates that the portals API has not been successfutiglized.
PTL_MD _INVALID Indicates thatnd_handleis not a valid memory descriptor handle.
PTL _MD_IN_USE Indicates thatd handlehas pending operations and cannot be released. See Bidure

for when data structures are considered to be in use.

3.11 List Entries and Lists

A listis a chain of list entries. Examples of lists include briority list and the overflow list. Each list entry (LE)
describes a memory region and includes a set of optionstHeitarget side analogue of the memory descriptor
(MD). A list is created using thetILEAppend() function, which appends a single list entry to the specifigicbin the
specified portal index, and returns the list entry handlst &ntries can be dynamically removed from a list using the
PtILEUnlink() function.

List entries can be appended to either the priority list erdtaerflow list associated with a portal table entry;
however, when attached to an overflow list, additional seéisiare implied that require the implementation to track
messages that arrive in list entries. Essentially, the nmgmegion identified is simply provided to the
implementation for use in managing unexpected messagé®r8provided in the overflow list will post an event
(PTL_EVENT _UNLI NK) when the buffer space has been consumed, to notify thecapipl that more buffer space may
be needed. When the application is free to reuse the buféertiie implementation is done with it), another event
(PTL_EVENT _FREE) will be posted. A third type of evenP{L_EVENT_DROPPED) will be posted if a message arrives,
finds no entries the priority list, and the overflow list is axited.

Discussion It is the responsibility of the application to ensure that ilmplementation has sufficient
buffer space to manage unexpected messages. Failure tdl dawge messages to be dropped and an
PTL_EVENT _DROPPED to be posted. Note that overflow events can readily exhaastwént queue.
Proper use of the API will generally require the applicatiopost at least two (and typically several)
buffers so that the application has time to noticeRfie _EVENT_UNLI NK and replace the buffer. In
many usage scenarios, however, the application may chodse/é only persistent list entries in the
priority list. Thus, overflow list entries will not be reqed.

Discussion It is the responsibility of the implementation to determimieen a buffer unlinked from an
overflow list can be reused. It must note that it is no longédihg state in the buffer and post a
PTL_EVENT_FREE event.

List entries can be appended to a network interface withPTheN _NO_MATCHI NG option set (a non-matching
network interface). A matching network interface requienatch list entry.

3.11.1 The List Entry Type

Theptl _le_t type defines the visible parts of a list entry. Values of thgetare used to initialize the list entries.

Discussion The list entry (LE) has a number of fields in common with the ragndescriptor (MD).

The overlapping fields have the same meaning in the LE as iMByghowever, since initiator and target
resources are decoupled, the MD is not a proper subset oBharid the options field has different
meaning based on whether it is used at an initiator or taitgegs deemed undesirable and cumbersome
to include a “target MD” structure that would be included aatry in the LE.

54

Discussion The default behavior from Portals 3.3 (no truncation andllgananaged offsets) has been
changed to match the default semantics of the list entryclvtioes not provide matching.

To facilitate acccess control to both list entries and méstlentries, theptl_ac.id t is defined as a union of a job ID
and a user ID. Aotl_ac.id_t is attached to each list entry or match list entry to controloh user (or which job, as
selected by an option) can access the entry. Either fieldmecifg a wildcard.

typedef union {
ptl_jid _t jid ;
ptl _uid _t uid;
} ptl_acid-t ;
Members
uid The user identifier of thénitiator that may access the associated list
entry or match list entry. This may be setRtL_Ul D_ANY to allow access
by any user.
jid The job identifier of thenitiator that may access the associated list entry
or match list entry. This may be setRdL_JI D_ANY to allow access by
any job.
typedef struct {
void *start ;
ptl_sizet length;
ptl _handle_ct_t ct_handle;
ptl_ac.id_t acid;
unsigned int options;
} ptldet ;
Members
start, length Specify the memory region associated with the match lisyeihestart

member specifies the starting address for the memory regibiha
lengthmember specifies the length of the region. Ftert member can
beNULL provided that théengthmember is zero. Zero-length buffers
(NULL LE) are useful to record events. There are no alignment
restrictions on buffer alignment, the starting addressed¢ngth of the
region; although messages that are not natively aligned {@a four
byte or eight byte boundary) may be slower (i.e., lower badtwand/or
longer latency) on some implementations.

ct_handle A handle for counting type events associated with the memegipn. If
this argument i®TL_CT_NONE, operations performed on this list entry are
not counted.

55

ac.id

options

PTL_LE_OP_PUT

PTL_LE_OP_GET

PTL_LE_USE_ONCE

PTL_LE_ACK_DI SABLE

PTL_I OVEC

PTL_LE_EVENT_DI SABLE
PTL_LE_EVENT_SUCCESS_DI SABLE

PTL_LE_EVENT_OVER DI SABLE
PTL_LE_EVENT _UNLI NK_DI SABLE

PTL_LE_.EVENT_CT_GET

Specifies either the user ID or job ID (as selected by the pgjithat
may access this list entry. Either the user ID or job ID maydtdsa
wildcard PTL_Ul D_ANY or PTL_JI D_ANY). If the access control check
fails, then the message is dropped without modifying Pestdte. This
is treated as a permissions failure andmiislIStatus() register indexed
by PTL_SR_PERM SSI ONS_VI OLATI ONS is incremented. This failure is
also indicated to the initiator through thefail typein the
PTL_EVENT_SEND event, unless thBTL_MD_REMOTE_FAI LURE_DI SABLE
option is set.

Specifies the behavior of the list entry. The following opsaan be
selected: enablputoperations (yes or no), enaljetoperations (yes or
no), offset management (local or remote), message trumcétes or
no), acknowledgment (yes or no), use scatter/gather \seatat disable
events. Values for this argument can be constructed usiityvs® OR
of the following values:

Specifies that the list entry will respond poitoperations. By default, list
entries rejecputoperations. If goutoperation targets a list entry where
PTL_LE_OP_PUT is not set, it is treated as a permissions failure.

Specifies that the list entry will respond getoperations. By default, list
entries rejecyetoperations. If ggetoperation targets a list entry where
PTL_LE_OP_CET is not set, it is treated as a permissions failure

Note: It is not considered an error to have a list entry that doés no
respond to eitheputor getoperations: Every list entry respondsraply
operations. Nor is it considered an error to have a list ey responds
to bothputandgetoperations. In fact, it is often desirable for a list entry
used in amtomicoperation to be configured to respond to bpttiand
getoperations.

Specifies that the list entry will only be used once and thdimked. If
this option is not set, the list entry persists until it is ksifly unlinked is
triggered.

Specifies that ancknowledgmerghouldnot be sent for incomingut
operations, even if requested. By default, acknowledgsnaia sent for
putoperations that request an acknowledgment. This appliestto
standard and counting type events. Acknowledgments aex sewt for
getoperations. The data sent in theply serves as an implicit
acknowledgment.

Specifies that thet art argument is a pointer to an array of type

ptl _iovect (Section3.10.9 and thd engt h argument is the length of the
array. This allows for a scatter/gather capability for &iatries. A
scatter/gather list entry behaves exactly as a list entiydbscribes a
single virtually contiguous region of memory. All other samtics are
identical.

Specifies that this list entry should not generate events.

Specifies that this list entry should not generate eventsriticate
success. This is useful in scenarios where the applicaties dot need
normal events, but does require failure information to exckaeliability.

Specifies that this list entry should not generate overfleielents.

Specifies that this list entry should not generate unlink
(PTL_EVENT_UNLI NK) or free PTL_EVENT_FREE) events.

Enable the counting (ITL_EVENT _GET events.

56

PTL_LE_EVENT_CT_PUT Enable the counting &TL_EVENT_PUT events.
PTL_LE_EVENT_CT_PUT_OVERFLOW Enable the counting &fTL_EVENT _PUT_OVERFLOWevents.
PTL_LE_EVENT_CT_ATOM C Enable the counting dITL_EVENT_ATOM C events.
PTL_LE_EVENT_CT_ATOM C_OVERFLOW Enable the counting diTL_EVENT_ATOM C_OVERFLOWevents.

PTL_LE_.AUTH.USE_JI D Use job ID for authentication instead of user ID. By defatlig user ID
must match to allow a message to access a list entry.

3.11.2 PtlILEAppend

ThePtiLEAppend() function creates a single list entry and appends this eatitye end of the list specified pil_list
associated with the portal table entry specifiegbindexfor the portal table foni_handle If the list is currently
uninitialized, thePtILEAppend() function creates the first entry in the list.

When a list entry is posted to a list, the overflow list is chettesee if a message has arrived prior to posting the list
entry. If so, aPTL_EVENT_PUT_OVERFLOWevent is generated. No searching is performed when a ligt snposted to
the overflow list.

typedef enum {
PTL_PRIORITY_LIST, PTLOVERFLOW, PTLPROBEONLY
} ptllist.t

LE List Types

PTL_PRIORI TY_LI ST The priority list associated with a portal table entry
PTL_OVERFLOW The overflow list associated with a portal table entry
PTL_PROBE_ONLY Do not attach to a list. Use the LE to probe the overflow listheiit

consuming an item in the list and without being attached d@ye.

Function Prototype for PtILEAppend

int PtILEAppendptl _handle_ni_t ni_handle,
ptl _pt_index_t ptindex,
ptl _le_t le,
ptl _list_t ptl_list
void xuserptr ,
ptl_handle le_t *|le_handle);
Arguments
ni_handle input The interface handle to use.
ptindex input The portal table index where the list entry should be appénde

57

le input Provides initial values for the user-visible parts of adistry. Other than its
use for initialization, there is no linkage between thisisture and the list entry
maintained by the API.

ptl_list input Determines whether the list entry is appended to the pyitsit, appended to
the overflow list, or simply queries the overflow list.

userptr input A user-specified value that is associated with each comnieidtén generate
an event. The value does not need to be a pointer, but mustlii¢ ispace used
by a pointer. This value (along with other values) is recdritieevents
associated with operations on this list eAtry

le_handle output On successful return, this location will hold the newly ¢eeHlist entry handle.

Return Codes

PTL_OK Indicates success.

PTL _NI_INVALID Indicates thahi_handleis not a valid network interface handle.

PTL _NO.INIT Indicates that the portals APl has not been successfutiglizied.

PTL _PT_INDEX _INVALID Indicates thapt indexis not a valid portal table index.

PTL _NO_SPACE Indicates that there is insufficient memory to allocate tlaaim list entry.

PTL_LE LIST _TOO_LONG Indicates that the resulting list is too long. The maximumglh for a list is defined by
the interface.

3.11.3 PtILEUnIink

ThePtILEUnlink() function can be used to unlink a list entry from a list. Thiggiion also releases any resources
associated with the list entry. It is an error to use the ligtyehandle after callingetiLEUnlink() .

Function Prototype for PtILEUnlink

int PtILEUnlink(ptl _-handle_le_t le_handle);
Arguments
le_handle input The list entry handle to be unlinked.

Discussion If this list entry has pending operations; e.g., an unfirdstegly operation, then
PtILEUnlink() will return PTL _LE _IN_USE, and the list entry will not be unlinked. This essentially
creates a race between the application retrying the unfiekasion and a new operation arriving. This is
believed to be reasonable as the application rarely wantsliok an LE while new operations are
arriving to it.

1Tying commands to a user-defined value is useful at the targenwie command needs to be associated with a data structureaimedht
by the process outside of the portals library. For exampléviBhimplementation can set theserptr argument to the value of an MPI Request.
This direct association allows for processing of list ety the MPI implementation without a table lookup or a seawchhie appropriate MPI
Request.

58

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglizied.

PTL _LE _INVALID Indicates thate_handleis not a valid list entry handle.

PTL_LE_IN_USE Indicates that the list entry has pending operations andatdre unlinked.

3.12 Match List Entries and Matching Lists

Matching list entries add matching semantics to the bastictinstructs. Each match list entry (ME) adds a set of
match criteria to the basic memory region description inli$teentry. The match criteria added can be used to reject
incoming requests based on process identifier or the matsiptavided in the request. A match list (priority list or
overflow list) is created using tiIMEAppend() function, which appends a single match list entry to the iigelc
portal index, and returns the match list entry handle. Matghist entries can be dynamically removed from a list
using thePtIMEUnIlink() function.

Matching list entries can be appended to either the pridistyr the overflow list associated with a portal table entry
however, when attached to an overflow list, additional s¢icsare implied that require the implementation to track
messages that arrive in match list entries. Essentialyntemory region identified is simply provided to the
implementation for use in managing unexpected messagegveq the application may use the match bits and other
matching criteria to further constrain how these buffeeswsed. Buffers provided in the overflow list will post an
event PTL_EVENT_UNLI NK) when the buffer space has been consumed, to notify thecagipih that more buffer

space may be needed. When the application is free to reusaftke (pe. the implementation is done with it),

another eventRTL_EVENT _FREE) will be posted. A third type of evenP{L_EVENT_DROPPED) will be posted if a
message arrives, does not match in the priority list, andteeflow list is exhausted.

Discussion It is the responsibility of the application to ensure that ilmplementation has sufficient
buffer space to manage unexpected messages. Failure tdl dawge messages to be dropped and an
PTL_EVENT _DROPPED to be posted. Note that overflow events can readily exhaastuént queue.
Proper use of the API will generally require the applicatiopost at least two (and typically several)
buffers so that the application has time to noticeRfie _EVENT_UNLI NK and replace the buffer.

Discussion It is the responsibility of the implementation to determinigen a buffer unlinked from an
overflow list can be reused. It must note that it is no longédihg state in the buffer and post a
PTL_EVENT_FREE event.

Matching list entries can be appended to a network interfateut thePTL_NI _NO_MATCHI NG option set; however,
an NI with thePTL_NI _LOG CAL option set changes the interpretation of thatchid.

3.12.1 The Match List Entry Type

Theptl_me.t type defines the visible parts of a match list entry. Valuethisftype are used to initialize and update the
match list entries.

Discussion The match list entry (ME) has a number of fields in common whithrihemory descriptor
(MD). The overlapping fields have the same meaning in the Mig &8s MD; however, since initiator
and target resources are decoupled, the MD is not a propsetabthe ME, and the options field has

59

different meaning based on whether it is used at an initiatéarget, it was deemed undesirable and
cumbersome to include a “target MD” structure that wouldrmBiided as an entry in the ME.

typedef struct {

void *start ;
ptl _sizet length;
ptl _handle_ct_t ct_handle;
ptl _sizet min_free;
ptl_ac.id_t acid;
unsigned int options;
ptl _processid_t matchid;
ptl_match_bits_t matchbits ;
ptl_match_bits_t ignore.bits ;
} ptl_me_t;
Members

start, length

ct.handle

min_free

ac.id

options

Specify the memory region associated with the match lisyefhestart
member specifies the starting address for the memory regibithe
lengthmember specifies the length of the region. Ftert member can
beNULL provided that théengthmember is zero. Zero-length buffers
(NULL ME) are useful to record events. There are no alignment
restrictions on buffer alignment, the starting addresede¢ngth of the
region; although unaligned messages may be slower (iveerlo
bandwidth and/or longer latency) on some implementations.

A handle for counting type events associated with the memegipn. If
this argument i®TL_CT_NONE, operations performed on this match list
entry are not counted.

When the unused portion of a match list entry (length - loctslatj falls
below this value, the match list entry automatically un$inkT his value
is only used if thePTL_ME_M N_FREE option is specified and
PTL_ME_MANAGE_LOCAL is set.

Specifies either the user ID or job ID (as selected by the pgjithat
may access this match list entry. Either the user ID or job &Y itoe set
to a wildcard PTL_UI D_ANY or PTL_JI D_ANY). If the access control check
fails, then the message is dropped without modifying Pedtdte. This
is treated as a permissions failure andriiNIStatus() register indexed
by PTL_SR_PERM SSI ONS_VI OLATI ONS is incremented. This failure is
also indicated to the initiator through thefail typein the
PTL_EVENT_SEND event, unless thBTL_MD_REMOTE_FAI LURE_DI SABLE
option is set.

Specifies the behavior of the match list entry. The followdpdgions can
be selected: enablgutoperations (yes or no), enalijetoperations (yes
or no), offset management (local or remote), message ttionoges or
no), acknowledgment (yes or no), use scatter/gather \seatat disable
events. Values for this argument can be constructed usiitgvess® OR
of the following values:

60

PTL_ME_OP_PUT

PTL_ME_OP_GET

PTL _ME_MANAGE_LOCAL

PTL_ME_NO_TRUNCATE

PTL_ME_USE_ONCE

PTL_VE_MAY_ALI GN

PTL_ME_ACK_DI SABLE

PTL_I OVEC

PTL_VE_M N_FREE

Specifies that the match list entry will respondotat operations. By
default, match list entries rejeputoperations. If goutoperation targets

a list entry wherd’TL_VE_OP_PUT is not set, it is treated as a permissions
failure.

Specifies that the match list entry will respondtetoperations. By
default, match list entries rejegetoperations. If gyetoperation targets

a list entry wherd®TL_ME_OP_CET is not set, it is treated as a permissions
failure.

Note: It is not considered an error to have a match list entry tbasdot
respond to eitheputor getoperations: Every match list entry responds
to replyoperations. Nor is it considered an error to have a match list
entry that responds to boglutandgetoperations. In fact, it is often
desirable for a match list entry used in atlwmicoperation to be
configured to respond to boflutandgetoperations.

Specifies that the offset used in accessing the memory réginanaged
locally. By default, the offset is in the incoming message.eWthe
offset is maintained locally, the offset is incremented|ig flength of the
request so that the next operatigru{and/orge) will access the next
part of the memory region.

Note that only one offset variable exists per match listyenfiboth put
andgetoperations are performed on a match list entry, the valubaif t
single variable is updated each time.

Specifies that the length provided in the incoming requastagbe
reduced to match the memory available in the region. Thicease the
match to fail. (The memory available in a memory region isdeined
by subtracting the offset from the length of the memory ragi®y
default, if the length in the incoming operation is greakem the amount
of memory available, the operation is truncated.

Specifies that the match list entry will only be used once aed t
unlinked. If this option is not set, the match list entry peisuntil
another unlink condition is triggered.

Indicate that messages deposited into this match list emagybe aligned
by the implementation to a performance optimizing boundary
Essentially, this is a performance hint to the implemeatato indicate
that the application does not care about the specific placeofi¢he
data. This option is only relevant when tAE._VE_MANAGE_LOCAL option
is set.

Specifies that ancknowledgmerghouldnot be sent for incomingut
operations, even if requested. By default, acknowledgsnara sent for
putoperations that request an acknowledgment. This appliestto
standard and counting type events. Acknowledgments aer sewt for
getoperations. The data sent in theply serves as an implicit
acknowledgment.

Specifies that thet art argument is a pointer to an array of type

ptl _iovect (Section3.10.9 and thd engt h argument is the length of the
array. This allows for a scatter/gather capability for rhdist entries. A
scatter/gather match list entry behaves exactly as a miatantry that
describes a single virtually contiguous region of memory.ofher
semantics are identical.

Specifies that thenin_freefield in the match list entry is to be used. This
option is only used iPTL_ME_MANAGE_LOCAL is set.

61

PTL_ME_EVENT _DI SABLE Specifies that this match list entry should not generateteven

PTL _ME_EVENT _SUCCESS_DI SABLE Specifies that this match list entry should not generatetevbat indicate
success. This is useful in scenarios where the applicaties dot need
normal events, but does require failure information to exckaeliability.

PTL_ME_EVENT_OVER DI SABLE Specifies that this match list entry should not generateflovetist
events PTL_EVENT_PUT_OVERFLONevents).

PTL_ME_EVENT _UNLI NK_DI SABLE Specifies that this match list entry should not generatenlanli
(PTL_EVENT_UNLI NK) or free PTL_EVENT_FREE) events.

PTL_ME_EVENT _CT_GET Enable the counting &fTL_EVENT _GET events.

PTL_ME_EVENT_CT_PUT Enable the counting dfTL_EVENT_PUT events.

PTL_ME_EVENT _CT_PUT_OVERFLOW Enable the counting &fTL_EVENT _PUT_OVERFLOWevents.

PTL_ME_EVENT_CT_ATOM C Enable the counting dfTL_EVENT_ATOM C events.

PTL_ME_EVENT_CT_ATOM C_OVERFLOWN Enable the counting cfTL_EVENT_ATOM C_OVERFLOWevents.

PTL_VE_AUTH.USE_JI D Use job ID for authentication instead of user ID. By defatlig user ID
must match to allow a message to access a match list entry.

matchid Specifies the match criteria for the process identifier oftlygiester. The
constant®TL_PI D_.ANY andPTL_NI D_ANY can be used to wildcard either
of the physical identifiers in thgtl_processid_t structure, or
PTL_RANK_ANY can be used to wildcard the rank for logical addressing.

matchbits, ignore bits Specify the match criteria to apply to the match bits in tleimning
request. Thégnore bits are used to mask out insignificant bits in the
incoming match bits. The resulting bits are then comparddaanatch
list entry’s match bits to determine if the incoming requestets the
match criteria.

Discussion Incoming match bits are compared to the match bits storgabimatch list entry using the
ignore bits as a mask. An optimized version of this is showthéifollowing code fragment:

((incomingbits ~ matchbits) & “ignorebits) ==

3.12.2 PtIMEAppend

ThePtIMEAppend() function creates a single match list entryPTL_PRI ORI TY_LI ST or PTL_OVERFLOWis specified
by ptl_list, this entry is appended to the end of the appropriate listiBpé by ptl_list associated with the portal table
entry specified byt indexfor the portal table foni_handle If the list is currently uninitialized, thetIMEAppend()
function creates the first entry in the list.

When a match list entry is posted to the priority list, the dleer list is searched to see if a matching message has
arrived prior to posting the match list entry. If SOPE._EVENT_PUT_OVERFLOWevent is generated. No searching is
performed when a match list entry is posted to the overflow lis

If ptl_list is set toPTL_PROBE_ONLY, the overflow list is probed to support the MPtobe functionality. A probe of the
overflow list will alwaysgenerate #TL_EVENT_PROBE event. If a matching message was found in the overflow list,
PTL_NI _(Kiis returned in the event. Otherwise, the event indicateshiegprobe operation failed.

62

} ptllist.t

typedef enum {
PTL_PRIORITY_LIST, PTL.OVERFLOW, PTLPROBEONLY

ME List Types

PTL_PRI ORI TY_LI ST
PTL_OVERFLOW
PTL_PROBE_ONLY

Function Prototype for PtIMEAppend

The priority list associated with a portal table entry
The overflow list associated with a portal table entry

Do not attach to a list. Use the ME to probe the overflow listhewit
consuming an item in the list and without being attached d@yre.

int PtIMEAppendptl _handle_ni_t ni_handle,
ptl _pt_index_t ptindex,
ptl_me._t me
ptl _list_t ptl_list
void xuserptr ,
ptl _handle_me.t *mehandle;
Arguments
ni_handle input The interface handle to use.
ptindex input The portal table index where the match list entry should lpeaged.
me input Provides initial values for the user-visible parts of a rhdist entry. Other than
its use for initialization, there is no linkage between #tisicture and the
match list entry maintained by the API.
ptl_list input Determines whether the match list entry is appended to tbeityrlist,
appended to the overflow list, or simply queries the overfistv |
userptr input A user-specified value that is associated with each comnieictén generate
an event. The value does not need to be a pointer, but mustlii¢ ispace used
by a pointer. This value (along with other values) is recdritieevents
associated with operations on this match list entry
mehandle output On successful return, this location will hold the newly ¢egbamatch list entry

Return Codes

PTL_OK
PTL _NI_INVALID

handle.

Indicates success.

Indicates thahi_handleis not a valid network interface handle.

2Tying commands to a user-defined value is useful at the targem wte command needs to be associated with a data structureimaihby
the process outside of the portals library. For example, ahiMplementation can set theserptr argument to the value of an MPI Request. This
direct association allows for processing of match list esthy the MPI implementation without a table lookup or a seavckhie appropriate MPI

Request.

63

PTL_NO.INIT Indicates that the portals API has not been successfutiglizid.

PTL_PT_INDEX _INVALID Indicates thapt indexis not a valid portal table index.
PTL_PROCESSINVALID Indicates thatnatchid in the match list entry is not a valid process identifier.
PTL _NO_SPACE Indicates that there is insufficient memory to allocate ttaaim list entry.

PTL_ME _LIST _TOO_LONG Indicates that the resulting list is too long. The maximungl for a list is defined by
the interface.

| MPLEMENTATION

NOTE 18- Checkingmatchid

Checking whether a match_id is a valid process identifier may require
global knowledge. However, PtIMEAppend() is not meant to cause
any communication with other nodes in the system. Therefore,
PTL_PROCESS_INVALID may not be returned in some cases where it
would seem appropriate.

3.12.3 PtIMEUnNlink

ThePtIMEUnNIink() function can be used to unlink a match list entry from a litisToperation also releases any
resources associated with the match list entry. It is arr éorose the match list entry handle after calling
PHMEUNIInk() .

Function Prototype for PtIMEUnlink

int PtIMEUnIink(ptl _-handle_me_t mehandlg;

Arguments

mehandle input The match list entry handle to be unlinked.

Discussion If this match list entry has pending operations; e.g., amisitfedreply operation, then
PtIMEUnlink() will return PTL _ME _IN_USE, and the match list entry will not be unlinked. This
essentially creates a race between the application rgttiiunlink operation and a new operation
arriving. This is believed to be reasonable as the apptinatirely wants to unlink an ME while new
operations are arriving to it.

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals API has not been successfutiglizid.

PTL _ME _INVALID Indicates thate handleis not a valid match list entry handle.

PTL_ME _IN_USE Indicates that the match list entry has pending operatiodsannot be unlinked.

64

3.13 Events and Event Queues

Event queues are used to log operations performed on lodahriist entries or memory descriptors. In particular,
they signal the end of a data transmission into or out of a nngmagion. They can also be used to hold
acknowledgments for completgditoperations and indicate when a match list entry has beenkadi Multiple
memory descriptors or match list entries can share a singlat gueue.

In addition to theptl _handle_eq. t type, the portals API defines four types associated withtev@meptl _eventkind _t
type defines the kinds of events that can be stored in an eueneq Thetl eventt type defines the structure that is
placed into event queues, whilé _initiator _eventt andptl _target_eventt types define sub-fields that hold the
information associated with an event.

The portals API provides five functions for dealing with evgneues: Th&tIEQAIlloc() function is used to allocate
the API resources needed for an event queueRtE®Free() function is used to release these resources, the
PHEQGet() function can be used to get the next event from an event qtleeletiEQWait() function can be used to
block a process (or thread) until an event queue has at Ineghwent, and thetiIEQPoll() function can be used to test
or wait on multiple event queues.

3.13.1 Kinds of Events

The portals API defines twelve types of events that can besldggan event queue:

typedef enum {
PTL_ EVENT_GET,
PTL.EVENT_PUT,
PTL.EVENT_PUT_OVERFLOW,
PTL.EVENT_ATOMIC,
PTL.EVENT_REPLY,
PTL.EVENT_SEND,
PTL_.EVENT_ACK,
PTL_EVENT_UNLINK,
PTL_.EVENT_FREE,
PTL_.EVENT_DROPPED,
PTL_.EVENT_PROBE

} ptl_eventkind _t ;

Event types
PTL_EVENT_GET A previously initiatedgetoperation completed successfully.
PTL_EVENT_PUT A previously initiatedput operation completed successfully. The

underlying layers will not alter the memory (on behalf ofstbperation)
once this event has been logged.

65

PTL_EVENT_PUT_OVERFLOW

PTL_EVENT_ATOM C
PTL_EVENT_REPLY

PTL_EVENT_SEND

PTL_EVENT_ACK

PTL_EVENT_DROPPED

PTL_EVENT_UNLI NK
PTL_EVENT_FREE

PTL_EVENT_PROBE

A match list entry posted bptIMEAppend() matched a message that
has already arrived and is managed within the overflow liit.sAme, or
none of the message may have been captured in local memory as
requested by the match list entry and described byl#mgthand
mlengthin the event. The event will point to the start of the message i
the memory region described by the match list entry from therftow
list, if any of the message was captured. Whenrtbiegthandmlength
fields do not match (i.e. the message was truncated), theapph is
responsible for performing the remaining transfer. Thigdslly occurs
when the application has provided an overflow list entry glesd to
accept headers but not message bodies. The transfer ialtymione by
the initiator creating a match list entry using a unique $&iits and then
placing the match bits in thiedr_datafield. The target can then use the
hdr_datafield (along with other information in the event) to retrighe
message.

A previously initiatedatomicoperation completed successfully.

A previously initiatedreply operation has completed successfully . This
event is logged after the data (if any) from the reply has lvestten into
the memory descriptor.

A previously initiatedsendoperation has completed. This event is
logged after the entire buffer has been sent and it is safeutgerthe

buffer.

An acknowledgmentvias received. This event is logged when the
acknowledgment is received

A message arrived, but did not match in the priority list amel doverflow
list was out of space. Thus, the message had to be dropped.

A match list entry was unlinked (Secti@12.2.

A match list entry in the overflow list that was previously imkkd is
now free to be reused by the application (Sec8diR.2.

A previously initiatedPtIMEAppend() call that was set to “probe only”
completed. If a match message was found in the overflowPT&t,NI _OK
is returned in thei_fail typefield of the event and the event queue
entries are filled in as if it were RIL_EVENT_PUT_OVERFLOWevent.
Otherwise, a failure is recorded in thefail typefield, theuserptr is
filled in correctly, and the other fields are undefined.

IMPLEMENTATION
NOTE 19:

OverflowEvents

An implementation is not required to deliver overflow events, if it can
prevent an overflow from happening. For example, if an
implementation used rendezvous at the lowest level, it could always
choose to deliver the message into the memory of the ME that would
eventually be posted

3.13.2 Event Occurrence

The diagrams in Figurg.1show when events occur in relation to portals operationsidrether they are recorded
on theinitiator or thetargetside. Note that local and remote events are not synchrowizetiered with respect to

each other.

66

Initiator

Operation on
MD pending ——#

PTL_EVENT_SEND

i
PTL_EVENT_ACK S
i

(a) putoperation with optionahcknowledgment
Initiator

PTL_EVENT_SEND

PTL_EVENT_REPLY

Initiator Target

Target

,,,,,,,,

PTL_EVENT_PUT

; PTL_EVENT_GET
i

PTL_EVENT_REPLY

(b) getoperation
Target

,,,,,,

,,,,,,

PTL_EVENT_ATOMIC

(c) atomicoperation

Figure 3.1. Portals Operations and Event Types:The red bars indicate the
times a local memory descriptor is considered to be in use by the systent; i.e
has operations pending. Users should not modify memory descriptongtch
list entries during those periods. (Also see implementation rflesnd21.)

IMPLEMENTATION
NOTE 20:

Pendingoperationsandbuffer modifications

Figure 3.1(a) indicates that the memory descriptor is in use from the
operation iniation until PTL_EVENT _ACK. However, the initiator is free to
modify the buffer the memory descriptor describes after the
PTL_EVENT_SEND event. Also see implementation note 21.

Figure3.1(a)shows the events that are generated fpusoperation including the optionalcknowledgmeniThe
diagram shows which events are generated aitiiator and thetargetside of theputoperation. Figur&.1(b)shows
the corresponding events fogatoperation, and Figurg.1(c)shows the events generated foratnmicoperation.

If during any of the operations shown in the diagrams of Fédil, a match list entry is unlinked, then a
PTL_EVENT_UNLI NK event is generated on tlt@rgetwhere it was unlinked. This is not shown in the diagrams. None
of these events are generated if the memory descriptor aimfiat entry has no event queue attached to it (see the
description ofPTL_EQNONE on page45 of Section3.10.7). The various types of events can be disabled individually.
(See the description &TL_ME_EVENT DI SABLE andPTL _ME_EVENT_UNLI NK_DI SABLE on page52, also in

Section3.12.1)

67

IMPLEMENTATION

NOTE 21- Pendingoperationsandacknowledgment

If a user attempts to unlink a match list entry or release a memory
descriptor while it has operations pending, the implementation should
return PTL_ME_IN_USE (or PTL_MD_IN_USE) until the operation has
completed or can be aborted cleanly.

After a PTL_EVENT_SEND a user can attempt to release the memory
descriptor. If the release is successful the implementation should
ensure a later acknowledgment is discarded, if it arrives. The same is
true for a reply. Since users cannot know when events occur, the
implementor has a certain amount of freedom honoring unlink requests
or returning PTL_MD_IN_USE.

Table3.2summarizes the portals event types. In the table we use thetlacal to describe the location where the
event is delivered,; it can be thieitiator or thetargetof an operation.

Table 3.2. Event Type Summary: A list of event types, whereiritiator or
targe) they can occur and the meaning of those events.

Event Type initiator target Meaning

PTL_EVENT_GET . Data was “pulled” from a local match list
entry.

PTL_EVENT_PUT . A put matched a previously posed match list
entry.

PTL _EVENT_PUT_OVERFLOW . A previous put arrived and matched a new
match list entry.

PTL_EVENT_ATOM C . Data was manipulated atomically in a local
match list entry.

PTL_EVENT_ATOM C_OVERFLOW . A previous atomic operation arrived and
matched a new match list entry.

PTL_EVENT _REPLY . Data arrived at a local memory descriptor
because of a locajetor atomicoperation.

PTL_EVENT_SEND . Data left a local memory descriptor because
of a localputor atomicoperation.

PTL_EVENT_ACK . An acknowledgment has arrived.

PTL_EVENT _DROPPED . A message was dropped because the
overflow list was out of space.

PTL_EVENT_PT_DI SABLED . A portal table entry has been disabled due to
resource exhaustion.

PTL _EVENT _UNLI NK . A local match list entry has been unlinked.

PTL_EVENT_FREE . A local match list entry that was posted to
the overflow list and was previously is now
free for reuse by the application (applies to
overflow lists).

PTL _EVENT_PROBE . A PtIMEAppend() that was set to probe only
completed

68

3.13.3 Failure Notification

There are three ways in which operations may fail to com@ateessfully: the system (hardware or software) can
fail in a way that makes the message undeliverable, a paonssgiolation can occur at the target, or resources can
be exhausted at a target that has enabled flow-control. lothey scenario, every operation that is started will
eventually complete. While an operation is in progress, teeory on theargetassociated with the operation

should not be viewed (in the case opator areply) or altered on thénitiator side (in the case of putor ge).
Operation completion, whether successful or unsuccessfiihal. That is, when an operation completes, the
memory associated with the operation will no longer be realtered by the operation. A network interface can use
the integral typeptl _ni_fail -t to define specific information regarding the failure of thegion and record this
information in theni_fail _typefield of an event. The constaRTL_N _OK should be used in successful end events to
indicate that there has been no failure. In turn, the coh®EnN _UNDELI VERABLE should indicate a system failure
that prevents message delivery. The congtahtNl _FLOANCTRL should indicate that the remote node has exhausted
its resources and has enabled flow control and dropped thlisage. The constaRTL_NI _PERM.VI OLATI ON should
indicate that the remote Portals addressing has indicgtedmaissions violation for this message. The latter tworerro
types require the stateful delivery of information from theget, and can be disabled by using

PTL_MD_REMOTE_FAI LURE_DI SABLE in the MD options (see Sectidh10.

| MPLEMENTATION

Completionof portalsoperations
NOTE 22: P P P

Portals guarantees that every operation started will finish with an event
if events are not disabled. While this document cannot enforce or
recommend a suitable time, a quality implementation will keep the
amount of time between an operation initiation and a corresponding
event as short as possible. That includes operations that do not
complete successfully. Timeouts of underlying protocols should be
chosen accordingly

3.13.4 The Event Queue Types

An event queue contaimsl_eventt structures, which containtgpeand a union of theargetspecific event structure
and theinitiator specific event structure.

typedef struct {
ptl_eventkind _t type;
union {
ptl target_eventt tevent ;
ptl _initiator _eventt ievent;
} event
} ptl_eventt ;
Members
type Indicates the type of the event.
event Contains the event information.

69

An operation on theéargetneeds information about the local match list entry modified,initiator of the operation
and the operation itself. These fields are included in astreu

typedef struct {

ptl _processid_t
ptl_pt_index_t
ptl _uid _t

ptl _jid _t
ptl_match_bits_t
ptl _sizet
ptl_sizet

ptl _sizet

void

void

ptl _hdr _data_t
ptl _ni_fail _t
ptl_op_t

ptl _datatype.t
volatile ptl_seqt

initiator ; /+ nid, pid or rankx/
ptindex;

uid;

jid ;

matchbits ;
rlength;

mlength
remoteoffset ;
*start ;

*userptr ;
hdr_data;

ni_fail _type ;
atomicoperation;
atomictype;
sequence

} ptl target_eventt ;

Members

initiator
ptindex
uid

jid

matchbits
rlength
mlength

remoteoffset

start

userptr

The identifier of thanitiator (ptl _processid _t).
The portal table index where the message arrived.
The user identifier of théitiator.

The job identifier of thenitiator. May bePTL_JI D_NONE in
implementations that do not support job identifiers.

The match bits specified by theitiator.
The length (in bytes) specified in the request.

The length (in bytes) of the data that was manipulated by pleeadion.
For truncated operations, the manipulated length will lgentihmber of
bytes specified by the memory descriptor operation (possitth an
offset). For all other operations, the manipulated lengthbe the length
of the requested operation.

The offset requested by the initiator.

The starting location (virtual, byte address) where thesags has been
placed. Thestart variable is the sum of thetart variable in the match list
entry and the offset used for the operation. The offset cattebermined
by the operation (SectioB.15 for a remote managed match list entry or
by the local memory descriptor (SectiBrl2).

When thePtIMEAppend() call matches a message that has arrived in the
overflow list, the start address points to the address inibeflow list
where the matching message resides. This may require thieatjgm to
copy the message to the desired buffer.

A user-specified value that is associated with each comntetidan
generate an event. Thserptr is placed in the event. For further
discussion ofiserptr, see Sectio.12.2

70

hdr_data
ni_fail _type

atomicoperation
atomictype

sequence

64 bits of out-of-band user data (Secti®i5.2.

Is used to convey the failure of an operation. Success isatell by
PTL_NI _CK; see sectio.13.3

If this event corresponds to an atomic operation, this etgie the atomic
operation that was performed

If this event corresponds to an atomic operation, this iatgie the data
type of the atomic operation that was performed

The sequence number for this event. Sequence numbers gresuai
each event.

Theinitiator, in contrast, can track all information about the attemaieeration; however, it does need the result of
the operation and a pointer to resolve back to the local wtrei¢racking the information about the operation. These
fields are provided by a much smaller event structure:

typedef struct {
ptl _sizet mlength
ptl _sizet offset ;
void xuserptr ;
ptl _ni_fail _t ni_fail _type ;
volatile ptl_seqt sequence

} ptl_initiator _eventt ;

Members

mlength ni_fail_type sequencguserptr

offset

See the discussion pfl target_eventt.

The displacement (in bytes) into the memory region that feation

used. The offset can be determined by the operation (Segtidhfor a
remote managed memory descriptor or by the local memoryrigésic
(Section3.10. The offset and the length of the memory descriptor can be
used to determine ihin_freehas been exceeded.

Discussion Thesequencenember is the last member and is volatile to support sharedaryeprocessor
(SMP) implementations. When a portals implementation fillan event structure, tlequencenember
should be written after all other members have been upditeceover, a memory barrier should be
inserted between the updating of other members and theingddtthesequencenember.

3.13.5 PtIEQAIloc

ThePtIEQAIloc() function is used to build an event queue.

Function Prototype for PtIEQAIlloc

int PtIEQAlloc(ptl -handle_ni_t

ptl _sizet
ptl _handle_eq.t

ni_handle,
count
xeq.handlg;

71

Arguments

ni_handle input The interface handle with which the event queue will be dased.

count input A hint as to the number of events to be stored in the event queue
implementation may provide space for more than the reqdestmber of
event queue slots.

eghandle output On successful return, this location will hold the newly ¢esbevent queue
handle.

Discussion An event queue has room for at leastintnumber of events. The event queue is circular.
If flow control is not enabled on the portal table entry (Seus$i3.6.1and2.3 then older events will be
overwritten by new ones if they are not removed in time by theru— using the functiorBtIEQGet(),
PtIEQWait(), or PtIEQPoll(). It is up to the user to determine the appropriate size ofvbateueue to
prevent this loss of events.

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL _NI_INVALID Indicates thahi_handleis not a valid network interface handle.

PTL _NO_SPACE Indicates that there is insufficient memory to allocate trenequeue.
PTL_SEGV Indicates thaeg handleis not a legal address.

| MPLEMENTATION

Locationof eventqueue
NOTE 23: !

The event queue is designed to reside in user space.
High-performance implementations can be designed so they only need
to write to the event queue but never have to read from it. This limits
the number of protection boundary crossings to update the event
gueue. However, implementors are free to place the event queue
anywhere they like; inside the kernel or the NIC for example.

| MPLEMENTATION

Sizeof eventqueueandreservedpace
NOTE 24: ! P

Because flow control may be enabled on the portal table entries that
this EQ is attached to, the implementation should insure that the space
allocated for the EQ is large enough to hold the requested number of
events plus the number of portal table entries associated with this
ni_handle. For each PtIPTAlloc() that enables flow control and uses a
given EQ, one space should be reserved for a

PTL_EVENT_PT_DI SABLED event associated with that EQ.

3.13.6 PtIEQFree

ThePtIEQFree() function releases the resources associated with an eveaeqlt is up to the user to ensure that no
memory descriptors or match list entries are associatddtivt event queue once it is freed.

72

Function Prototype for PtIEQFree

int PtIEQFreeftl _handle_eq.t eghandlg;
Arguments
eghandle input The event queue handle to be released.

Return Codes

PTL_OK
PTL_NO_INIT
PTL_EQ-INVALID

3.13.7 PtIEQGet

Indicates success.
Indicates that the portals API has not been successfutiglized.
Indicates thaeg handleis not a valid event queue handle.

ThePtIEQGet() function is a nonblocking function that can be used to gehtiy event in an event queue. The event
is removed from the queue.

Function Prototype for PIEQGet

int PtIEQGetptl _handle_eq.t eghandle
ptl _eventt xeven);
Arguments
eghandle input The event queue handle.

event

Return Codes

PTL_OK
PTL_EQ_DROPPED

PTL_NO_INIT
PTL_EQ_EMPTY
PTL_EQ-INVALID
PTL_SEGV

output On successful return, this location will hold the valuesoagsted with the next
event in the event queue.

Indicates success.

Indicates success (i.e., an event is returned) and thasttdee event between this
event and the last event obtained — ushiQGet() , PtIEQWait() , or PIEQPoll() —
from this event queue has been dropped due to limited spdbe gvent queue.

Indicates that the portals API has not been successfutiglized.
Indicates thatg handleis empty or another thread is waiting IEQWait() .
Indicates thatq handleis not a valid event queue handle.

Indicates thaeventis not a legal address.

73

3.13.8 PtEQWait

ThePtIEQWait() function can be used to block the calling process or threéitithare is an event in an event queue.
This function returns the next event in the event queue amdves this event from the queue. In the event that
multiple threads are waiting on the same event quetEQWait() is guaranteed to wake exactly one thread, but the
order in which they are awakened is not specified.

Function Prototype for PtIEQWait

int PtIEQWaitptl _handle_eq t eghandlg
ptl _eventt xeven);
Arguments
eghandle input The event queue handle to wait on. The calling process (@hreil be blocked
until the event queue is not empty.
event output On successful return, this location will hold the valuesoagsted with the next

event in the event queue.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and thaasttdae event between this
event and the last event obtained — ushi§gQGet() , PIEQWait() , or PIEQPoll() —
from this event queue has been dropped due to limited spdbe gvent queue.

PTL_NO._INIT Indicates that the portals API has not been successfutiglizied.
PTL_EQ_INVALID Indicates thaeg handleis not a valid event queue handle.
PTL_SEGV Indicates thaeventis not a legal address.

3.13.9 PtEQPoIl

ThePtIEQPoll() function can be used by the calling process to look for antedvem a set of event queues. Should
an event arrive on any of the queues contained in the arrayeoft gueue handles, the event will be returneeviant
andwhichwill contain the index of the event queue from which the eweas taken.

If PtIEQPoII() returns success, the corresponding event is consuptie@Poll() provides a timeout to allow
applications to poll, block for a fixed period, or block indetely. PEQPoll() is sufficiently general to implement
bothPtIEQGet() andPtIEQWait() , but these functions have been retained in the API for backeampatibility.

| MPLEMENTATION

NOTE 25: Fairnesof PtIEQPoll()

PtIEQPolIl() should poll the list of queues in a round-robin fashion. This
cannot guarantee fairness but meets common expectations.

74

Function Prototype for PtIEQPoll

xeg.handles
int size,
ptl _time_t timeout,
ptl_eventt xevent
int *»which);

int PtIEQPoll(ptl _handle_eq.t

Arguments

eghandles
size
timeout

event

which

Return Codes

PTL_OK
PTL_EQ_DROPPED

PTL_NO_INIT
PTL_EQ-INVALID

PTL_SEGV
PTL_EQ_EMPTY

input
input
input
output

output

An array of event queue handles. All the handles must refdrdcame
interface.

Length of the array.

Time in milliseconds to wait for an event to occur on one ofgkient queue
handles. The constaRTL_TI ME_LFOREVER can be used to indicate an infinite
timeout.

On successful returrPL _OK or PTL_EQ_DROPPED), this location will hold
the values associated with the next event in the event queue.

On successful return, this location will contain the indetoieq handlesof the
event queue from which the event was taken.

Indicates success.

Indicates success (i.e., an event is returned) and thasttdae event between this
event and the last event obtained from the event queue teditgwhichhas been
dropped due to limited space in the event queue.

Indicates that the portals API has not been successfutiglized.

Indicates that one or more of the event queue handles is hdi &ay., not all handles in
eg handlesare on the same network interface.

Indicates thaeventor whichis not a legal address.

Indicates that the timeout has been reached and all of thr¢ gueues are empty.

IMPLEMENTATION

NOTE 26:

MacrosusingPtIEQPoll()

Implementations are free to provide macros for PtIEQGet() and
PtIEQWait() that use PtIEQPoll() instead of providing these functions.

IMPLEMENTATION

NOTE 27:

Filling in theptl _eventt andptl target_eventt structures

All of the members of the ptl _event _t structure (and corresponding

ptl _initiator _event _t or ptl target _event _t sub-field) returned from
PHEQGet(), PIEQWait() , and PtIEQPoll() must be filled in with valid
information. An implementation may not leave any field in an event
unset.

75

3.14 Lightweight “Counting” Events

Standard events copy a significant amount of data from théeimgntation to the application. While this data is
critical for many uses (e.g. MPI), other programming modelg. PGAS) require very little information about
individual operations. To support lightweight operatioRertals provide a lightweight event mechanism known as
counting events.

Counting events are enabled by attachingiumandle_ct_t to a memory descriptor or match list entry and by
specifying which operations are to be counted in the optimhd. Counting events can be set to count either the total
number of operationsr the number of bytes transfered for the associated opegation

Counting events mirror standard events in virtually eveaywi hey can be used to log the same set of operations
performed on local match list entries or memory descriptoas event queues log. Counting events introduce an
additional type — the counting event handbd_handlect_t. A ptl_handle_ct_t refers two unsigned 64-bit integral
type variables that are allocated throughti€TAlloc() , queried through &tICTGet() or PtICTWait() , set through a
PtICTSet(), incremented throughRtICTInc() , and freed through BtICTFree() . To mirror the failure semantics of
the standard events, one variable counts the successhibenad the second variable counts the events that failed.

IMPLEMENTATION

NOTE 28: CountingEventHandles

A high performance implementation could choose to make a

ptl _handle _ct_t a simple pointer to a structure in the address space of
the application; however, in some cases, it may be desirable, or even
necessary, to allocate these pointers in a special part of the address
space (e.g. low physical addresses to facilitate accesses by particular
hardware).

Semantics for event occurrence match those described tio8&8.13.2 They can be independently
enabled/disabled with options on the memory descriptoratchlist entry analogous to those used for event queues.

3.14.1 The Counting Event Type

A ct_handlerefers to gptl_ct_eventt structure. The user visible portion of this structure corgdoth a count of
succeeding events and a count of failing events.

typedef struct {
ptl _sizet success
ptl _sizet failure ;
} ptl_ct_eventt ;

Members
success A count associated with successful events that counts ®eefiytes.
failure A count associated with failed events that counts eventytesb

76

3.14.2 PtICTAlloc

ThePtICTAlloc() function is used to allocate a counting event that counteeiperations on the memory descriptor
(match list entry) or bytes that flow out of (into) a memoryatgstor (match list entry). While &tICTAlloc() call

could be as simple as a malloc of a structure holding the aogietzent and a network interface handle, it may be
necessary to allocate the counting event in low memory oesatimer protected space; thus, an allocation routine is
provided. A newly allocated count is initialized to zero.

typedef enum {
PTL.CT_-OPERATION, PTLCT.BYTE

} ptl_ct_typet ;

Function Prototype for PtICTAlloc

int PtICTAlloc(ptl _handle_ni_t ni_handle,
ptl _ct_type._t cttype,
ptl _handle_ct_t *ct_handle);
Arguments

ni_handle input The interface handle with which the counting event will becasated.

cttype input A selection between counting operations and counting bytes

ct_handle output On successful return, this location will hold the newly ¢egbcounting event

handle.

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.

PTL _NI_INVALID Indicates thahi_handleis not a valid network interface handle.

PTL _NO_SPACE Indicates that there is insufficient memory to allocate twenting event.
PTL _SEGV Indicates thatt_handleis not a legal address.

IMPLEMENTATION

Minimizing costof countingevents
NOTE 29: g 9

A quality implementation will attempt to minimize the cost of counting
events. This can be done by translating the simple functions
(PICTGet(), PICTWait() , PtICTSet(), and PtICTInc()) into simple
macros that directly access a structure in the applications memory
unless otherwise required by the hardware.

77

3.14.3 PtlICTFree

ThePtICTFree() function releases the resources associated with a cousteryg. It is up to the user to ensure that no
memory descriptors or match list entries are associatddtivit counting event once it is freed.

Function Prototype for PtICTFree

int PtICTFreeptl _handle_ct_t cthandle);
Arguments
ct_handle input The counting event handle to be released.

Return Codes

PTL_OK Indicates success.
PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL_CT_INVALID Indicates thatt_handleis not a valid counting event handle.

3.14.4 PtICTGet

ThePtICTGet() function is used to obtain the current value of a countingieve

Function Prototype for PtICTGet

int PtICTGetptl _handle_ct_t ct_handle,
ptl _ct_eventt xeven);
Arguments
ct_handle input The counting event handle.
event output On successful return, this location will hold the currertiesassociated with

the counting event.

Return Codes

PTL_OK Indicates success.

PTL_NO._INIT Indicates that the portals API has not been successfutiglized.
PTL_CT_INVALID Indicates thatt_handleis not a valid counting event handle.
PTL_SEGV Indicates thaeventis not a legal address.

78

3.14.5 PtICTWait

ThePtICTWait() function is used to wait until the value of a counting everggsial to a test value.

Function Prototype for PtICTWait

int PtICTWait(tl _handle_ct_t ct_handle,
ptl _sizet test);
Arguments
ct_handle input The counting event handle.
test input On successful return, the sum of the success and failure fiélithe counting

event will be greater than or equal to this value.

Return Codes

PTL_OK Indicates success.
PTL_NO.INIT Indicates that the portals APl has not been successfutiglizid.
PTL _CT_INVALID Indicates thatt_handleis not a valid counting event handle.

3.14.6 PtICTSet

Periodically, it is desirable to reinitialize or adjust tvedue of a counting event. THICTSet() function is used to
set the value of a counting event.

Function Prototype for PtICTSet

int PtICTSetptl _handle_ct_t cthandle,
ptl _ct_eventt new.ct);
Arguments
ct_.handle input The counting event handle.
new.ct input On successful return, the value of the counting event wilehaeen set to this
value.

Return Codes

PTL_OK Indicates success.
PTL _NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL _CT_INVALID Indicates thatt_handleis not a valid counting event handle.

79

3.14.7 PtICTInc

In some scenarios, the counting event will need to be incnéeadeby the application. This must be done atomically,
so a functional interface is provided. TRe8CTInc() function is used to increment the value of a counting event.

Discussion As an example, a counting event may need to be incrementbd abmpletion of a
message that is received. If the message arrives in the @awvdidt, it may be desirable to delay the
counting event increment until the application can plaeed#ta in the correct buffer.

Function Prototype for PtICTInc

int PtICTInc(ptl _handle_ct_t ct.handle,
ptl _ct_eventt incremeny;
Arguments
ct_handle input The counting event handle.
increment input On successful return, the value of the counting event wileHzeen

incremented by this value.

Return Codes

PTL_OK Indicates success.
PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL_CT_INVALID Indicates thatt_handleis not a valid counting event handle.

3.15 Data Movement Operations

The portals API provides five data movement operati®®ut() , PtiGet() , PtlAtomic() , PtlIFetchAtomic() , and
PtISwap() .

IMPLEMENTATION

Functionsthatrequirecommunication
NOTE 30:

Other than PtIPut() , PtIGet(), PtlAtomic() , PtIFetchAtomic() , and
PtISwap() (and their triggered variants), no function in the portals API
requires communication with other nodes in the system.

3.15.1 Portals Acknowledgment Type Definition

Values of the typetl_ack req_t are used to control whether an acknowledgment should bengeatt the operation
completes (i.e., when the data has been written to a matamlisy of thetargetprocess). The valueTL_ACK_REQ
requests an acknowledgment, the vatlie_NO_ACK_REQrequests that no acknowledgment should be generated, the
valuePTL_CT_ACK_REQrequests a simple counting acknowledgment, and the VIlu€C ACK_REQrequests an

80

operation completed acknowledgement. When a counting adkdgment is requested, eitHerL_CT_OPERATI ON or
PTL_CT_BYTE can be set in thet_handle If PTL_CT_OPERATI ONis set, the number of acknowledgments is counted. If
PTL_CT_BYTE is set, the modified lengthm(engtt) from the target is counted at the initiator. The operatiompleted
acknowledgement is an acknowledgement that simply ineictitat the operation has completed at the targelbds
notindicate what was done with the message. The message mapéaveropped due to a permission violation or
may not have matched in the priority list or overflow list; Fexer, the operation completed acknowledgement would
still be sent. The operation completed acknowledgemensigaet of the counting acknowledgement with weaker
semantics. That is, it is a counting type of acknowledgepniaritit can only count operations.

typedef enum{PTL_ACK_REQ,
PTL.NO_ACK_REQ,
PTL.CT-ACK_REQ,
PTL.OCACK_REQ
} ptl_ackreq.-t ;

3.15.2 PtlPut

ThePtlPut() function initiates an asynchronopsitoperation. There are several events associated wyith a
operation: completion of the send on tindiator node PTL_EVENT_SEND) and, when the send completes successfully,
the receipt of an acknowledgme®T({ _EVENT _ACK) indicating that the operation was accepted byttrget The
eventPTL_EVENT_PUT is used at theéargetnode to indicate the end of data delivery, wiile._EVENT_PUT_OVERFLOWN

can be used on thiargetnode when a message arrives before the corresponding risttehtry (Figure3.1).

These (local) events will be logged in the event queue aataativith the memory descriptan(.handlg used in the
putoperation. Using a memory descriptor that does not havesotiaded event queue results in these events being
discarded. In this case, the caller must have another mesthde.g., a higher level protocol) for determining when it
is safe to modify the memory region associated with the mgrdescriptor.

The local (nitiator) offset is used to determine the starting address of the meragion within the region specified
by the memory descriptor and the length specifies the lerfgtieaegion in bytes. It is an error for the local offset
and length parameters to specify memory outside the menesgrithed by the memory descriptor.

Function Prototype for PtIPut

int PtIPut (ptl_handle.md_t mdhandle
ptl _sizet local_offset ,
ptl _sizet length,
ptl_ack_req-t ackreq,
ptl_processid_t targetid ,
ptl_pt_index_t ptindex,
ptl_match_bits_t matchbits,
ptl _sizet remoteoffset ,
void xuserptr ,
ptl_hdr_datat hdr_data);

Arguments

81

md.handle

local_offset
length
ackreq

targetid
ptindex

matchbits
remoteoffset

userptr

hdr_data

Return Codes

PTL_OK
PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID

3.15.3 PtlGet

input

input
input
input

input
input
input

input

input

input

The memory descriptor handle that describes the memory sefhie If the
memory descriptor has an event queue associated with iil) hewised to
record events when the message has been BENE/ENT_SEND,
PTL_EVENT _ACK).

Offset from the start of the memory descriptor.
Length of the memory region to be sent.

Controls whether an acknowledgment event is requestech@vdiedgments

are only sent when they are requested by the initiating jss@red the memory
descriptor has an event queared the target memory descriptor enables them.
Allowed constantsPTL_ACK_REQ, PTL_NO.ACK_REQ, PTL_CT_ACK_REQ,
PTL_OC_ACK_REQ.

A process identifier for théargetprocess.
The index in thetargetportal table.

The match bits to use for message selection atahgetprocess (only used
when matching is enabled on the network interface).

The offset into the target memory descriptor (used unlesgatigetmatch list
entry has théTL_ME_MANAGE_LCOCAL option set).

A user-specified value that is associated with each comntetd¢an generate
an event. The value does not need to be a pointer, but mustlii¢ ispace used
by a pointer. This value (along with other values) is recdrisienitiator events
associated with thisutoperation.

64 bits of user data that can be included in the message hd@ddgdata is
written to an event queue entry at tiagetif an event queue is present on the
match list entry that matches the message.

Indicates success.

Indicates that the portals APl has not been successfutiglized.

Indicates thatnd handleis not a valid memory descriptor.

Indicates thatargetid is not a valid process identifier.

ThePtiGet() function initiates a remote read operation. There are tvemi&svassociated with a get operation. When
the data is sent from thiargetnode, aPTL_EVENT_CET event is registered on thtargetnode. When the data is
returned from theargetnode, aPTL_EVENT_REPLY event is registered on thieitiator node. (Figure3.1)

The local (nitiator) offset is used to determine the starting address of the memagion and the length specifies the
length of the region in bytes. It is an error for the local effand length parameters to specify memory outside the
memory described by the memory descriptor.

3Tying commands to a user-defined value is useful for quicklptiog a user data structure associated withatheoperation. For example, an
MPI implementation can set theserptr argument to the value of an MPI Request. This direct assonialiows for processing of autoperation
completion event by the MPI implementation without a table lgokr a search for the appropriate MPI Request.

82

Function Prototype for PtiGet

int PtlGet (ptl_handle.md_t mdhandle
ptl _sizet local_offset
ptl _sizet length,
ptl_processid_t targetid ,
ptl_pt_index_t ptindex,
ptl_match_bits_t matchbits,

void *userptr ,
ptl _sizet remoteoffset);
Arguments
md.handle input ~ The memory descriptor handle that describes the memoryihich the
requested data will be received. The memory descriptor ase an event
queue associated with it to record events, such as when tbsage receive has
started.
local_offset input Offset from the start of the memory descriptor.
length input Length of the memory region for threply.
targetid input A process identifier for théargetprocess.
ptindex input The index in thetargetportal table.
matchbits input The match bits to use for message selection atalgetprocess.
userptr input See the discussion f@tiPut() .
remoteoffset input The offset into the target match list entry (used unlessalget match list

entry has théTL_ME_MANAGE_LCOCAL option set).

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL _MD _INVALID Indicates thatnd handleis not a valid memory descriptor.
PTL_PROCESSINVALID Indicates thatarget.id is not a valid process identifier.

3.15.4 Portals Atomics Overview

Portals defines three closely related types of atomic ojpasatThePtlAtomic() function is a one-way operation that
performs an atomic operation on data at thegetwith the data passed in theeitmemory descriptor. The
PtlFetchAtomic() function extend®tlAtomic() to be an atomic fetch-and-update operation; thus, the \altre
targetbefore the operation is returned imeply message and placed into thetmemory descriptor of thaitiator.
Finally, thePtiISwap() operation atomically swaps data (including compare-amalpsand swap under mask, which
require aroperandargument).

The length of the operations performed bitetomic() or PtlFetchAtomic() is restricted to no more than
maxatomic sizebytes.PtiSwap() operations can also be uprmaxatomicsizebytes, except foPTL_CSWAP and
PTL_MBWAP operations, which are further restricted to 8 bytes (thgtlenf the longest native data type) in all

83

implementations. Théargetmatch list entry must be configured to responghtwoperations and tgetoperations if
areply is desired. Thiengthargument at the initiator is used to specify the size of tip@est.

There are three events that can be associated with atomiatmpes. When data is sent from thetiator node, a
PTL_EVENT_SEND event is registered on thieitiator node. If data is sent from thtargetnode, aPTL_EVENT_ATOM C
event is registered on thtargetnode; and if data is returned from thergetnode, aPTL_EVENT_REPLY event is
registered on théitiator node. Note that the target match list entry must havéTheME_OP_PUT flag set and must
also set théTL_ME_OP_CET flag to enable a reply.

The three atomic functions share two new arguments intredlirc Portals 4.0: an operatiopti(op_t) and a datatype
(ptl _datatype_t), as described below.

typedef enum {

PTL-MIN, PTL_MAX,
PTL.SUM, PTLPROD,
PTL.LOR, PTLLAND,
PTL.BOR, PTLBAND,
PTLLXOR, PTLBXOR,

PTL_.SWAP, PTLCSWAP, PTLMSWAP
} ptlopt;

Atomic Operations

PTL.LM N
PTL_VAX
PTL_SUM
PTL_PROD
PTLLCR
PTL_LAND
PTL_BCR
PTL_BAND
PTL_LXOR
PTL_BXCR
PTL_SWAP
PTL_CSWAP

PTL_VBWAP

Compute and return the minimum of the initiator and targéiea
Compute and return the maximum of the initiator and targkteza
Compute and return the sum of the initiator and target value.
Compute and return the product of the initiator and targkteza
Compute and return the logical OR of the initiator and tavgdte.
Compute and return the logical AND of the initiator and tanggdue.
Compute and return the bitwise OR of the initiator and tavgéte.
Compute and return the bitwise AND of the initiator and targgue.
Compute and return the logical XOR of the initiator and taxgdue.
Compute and return the bitwise XOR of the initiator and tavgdue.
Swap the initiator and target value and return the targeteval

A conditional swap — if the value of the operand is equal tottrget
value, the initiator and target value are swapped. The taejee is
always returned. This operation is limited to single datanis.

A swap under mask — update the bits of the target value thatedre 1
in the operand and return the target value. This operatibmited to
single data items.

84

typedef enum {
PTL.CHAR, PTLUCHAR,

PTL.INT, PTL_UINT,
PTL.LONG, PTLULONG,

} ptl_datatypet ;

PTL.SHORT, PTLUSHORT,

PTL_FLOAT, PTL.DOUBLE

Atomic Datatypes

PTL_CHAR
PTL_UCHAR
PTL_SHORT
PTL_USHORT
PTL_INT
PTL_U NT
PTL_LONG
PTL_ULONG
PTL_FLOAT
PTL_DOUBLE

3.15.5 PtlAtomic

Function Prototype for PtlAtomic

8-bit signed integer
8-bit unsigned integer
16-bit signed integer
16-bit unsigned integer
32-bit signed integer
32-bit unsigned integer
64-bit signed integer
64-bit unsigned integer

32-hit floating-point number
64-bit floating-point number

int PtlAtomic(ptl _handle_md_t md_handle
ptl _sizet local_offset ,
ptl _sizet length,
ptl_ack req_t ackreq,
ptl_processid_t targetid
ptl _pt_index_t ptindex,
ptl_match_bits_t matchbits,
ptl _sizet remoteoffset ,
void xuserptr,
ptl _hdr_data_t hdr_data,
ptl_op_t operation,
ptl _datatype.t datatype);
Arguments
md handle input The memory descriptor handle that describes the memory sethie If the
memory descriptor has an event queue associated with iil] hewsed to
record events when the message has been sent.
local_offset input Offset from the start of the memory descriptor referencethieynd handleto

use for transmitted data.

85

length
ackreq

targetid
ptindex

matchbits
remoteoffset

userptr

hdr_data

operation
datatype

Return Codes

PTL_OK

PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID

3.15.6 PtlFetchAtomic

input
input

input
input
input
input

input

input

input
input

Length of the memory region to be sent and/or received.

Controls whether an acknowledgment event is requestechavdiedgments

are only sent when they are requested by the initiating jgs@r@d the memory
descriptor has an event queared the target memory descriptor enables them.
Allowed constantsPTL_ACK_REQ, PTL_NO.ACK_REQ, PTL_CT_ACK_REQ,
PTL_OC_ACK_REQ.

A process identifier for théargetprocess.
The index in thetargetportal table.
The match bits to use for message selection atalgetprocess.

The offset into the target memory descriptor (used unlessaifyet memory
descriptor has thBTL_ME_VANAGE_LOCAL option set).

See the discussion f@tlPut() .

64 bits of user data that can be included in the message hfddedata is
written to an event queue entry at ttzgetif an event queue is present on the
match list entry that the message matches.

The operation to be performed using the initiatior and tadgéa.
The type of data being operated on at the initiatior and targe

Indicates success.

Indicates that the portals APl has not been successfutiglized.

Indicates thaind handleis not a valid memory descriptor.

Indicates thatargetid is not a valid process identifier.

Function Prototype for PtlIFetchAtomic

int PtlIFetchAtomicptl _handle_md_t

ptl _sizet
ptl_handle_md_t
ptl _sizet

ptl _sizet

ptl _processid_t
ptl _pt_index_t
ptl_match_bits_t
ptl _sizet

void

ptl _hdr _data t
ptl _op_t

ptl _datatype._t

getmd.handle
local_getoffset
putmd handle
local_put offset
length,

targetid
ptindex,
matchbits ,
remoteoffset ,
xuserptr,
hdr_data,
operation,
datatype);

Arguments

86

getmd handle

local_get offset

putmd handle

local_put offset

length
targetid
ptindex
matchbits
remoteoffset

userptr
hdr_data

operation
datatype

Return Codes

PTL_OK

PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID

input

input

input

input

input
input
input
input
input

input

input

input
input

The memory descriptor handle that describes the memoryihich the result
of the operation will be placed. The memory descriptor carelan event
gqueue associated with it to record events, such as whenghk of the
operation has been returned.

Offset from the start of the memory descriptor referencethbyet md handle
to use for received data.

The memory descriptor handle that describes the memory sefhie If the
memory descriptor has an event queue associated with iil) hewised to
record events when the message has been sent.

Offset from the start of the memory descriptor referencethiy
put md_-handleto use for transmitted data.

Length of the memory region to be sent and/or received.

A process identifier for théargetprocess.

The index in thetargetportal table.

The match bits to use for message selection atahgetprocess.

The offset into the target memory descriptor (used unlessaifyet memory
descriptor has thETL_ME_MANAGE_LOCAL option set).

See the discussion f@tiPut() .

64 bits of user data that can be included in the message h@ddedata is
written to an event queue entry at tiz#getif an event queue is present on the
match list entry that the message matches.

The operation to be performed using the initiatior and tadgéa.

The type of data being operated on at the initiatior and targe

Indicates success.

Indicates that the portals API has not been successfutiglized.

Indicates thaput md_handleor getmd_-handleis not a valid memory descriptor.

Indicates thatargetid is not a valid process identifier.

87

3.15.7 PtISwap

Function Prototype for PtISwap

int PtiISwapptl _handle_md_t
ptl _sizet
ptl _handle_.md_t
ptl _sizet
ptl _sizet
ptl _processid _t
ptl _pt_index_t
ptl_match_bits_t
ptl _sizet
void
ptl _hdr _data t
void
ptl _op_t
ptl _datatype_t

getmdhandle
local_getoffset ,
putmd.handle
local_put offset
length,

targetid
ptindex,
matchbits,
remoteoffset ,
*userptr ,
hdr_data,
xoperand
operation,
datatype);

Arguments
getmd handle input
local_get offset input
putmd.handle input
local_put offset input
length input
targetid input
ptindex input
matchbits input
remoteoffset input
userptr input
hdr_data input
operand input
operation input
datatype input

The memory descriptor handle that describes the memoryihich the result
of the operation will be placed. The memory descriptor carelan event
gqueue associated with it to record events, such as whenghk of the
operation has been returned.

Offset from the start of the memory descriptor referencethbyet md handle
to use for received data.

The memory descriptor handle that describes the memory sete If the
memory descriptor has an event queue associated with iil) hewised to
record events when the message has been sent.

Offset from the start of the memory descriptor referencethly
putmd handleto use for transmitted data.

Length of the memory region to be sent and/or received.

A process identifier for théargetprocess.

The index in theargetportal table.

The match bits to use for message selection atdhgetprocess.

The offset into the target memory descriptor (used unlessaifyet memory
descriptor has thBTL_ME_VANAGE_LOCAL option set).

See the discussion f@tiPut() .

64 bits of user data that can be included in the message hfddedata is
written to an event queue entry at tlazgetif an event queue is present on the
match list entry that the message matches.

A pointer to the data to be used for tREL_CSWAP andPTL _MSWAP operations
(ignored for other operations). The data pointed to is otyipe specified by
thedatatypeargument and must be included in the message.

The operation to be performed using the initiatior and tadigéa.
The type of data being operated on at the initiatior and targe

88

Return Codes

PTL_OK Indicates success.

PTL_NO.INIT Indicates that the portals APl has not been successfutiglizied.

PTL_MD _INVALID Indicates thaput md_handleor getmd_-handleis not a valid memory descriptor.
PTL _PROCESSINVALID Indicates thatargetid is not a valid process identifier.

3.16 Triggered Operations

For a variety of scenarios, it is desirable to setup a regptmscoming messages. As an example, a tree based
reduction operation could be performed by having each laj/#re tree issue BtlAtomic() operation to its parent
after receiving @tlAtomic() from all of its children. To provide this operation, triggerversions of each of the data
movement operations are provided. To create a triggerectpe, atrig_ct handleand an integethresholdare
added to the argument list. When the count referenced blyithet handleargument reaches or exceeds the
threshold(equal to or greater), the operation proceatthe initiator of the operationFor example, a
PtlTriggeredGet() or aPtlTriggeredAtomic() will not leave theinitiator until the threshold is reached.

Discussion The use of drig_ct_handleandthresholdenables a variety of usage models. A single
match list entry can trigger one operation (or several) biggian independeritig ct_handleon the
match list entry. One operation can be triggered by a conibimaf previous events (include a
combination of initiator and target side events) by havithgfahe earlier operations reference a single
trig_ct_handleand using an appropriate threshold.

IMPLEMENTATION

NOTE 31: Orderingof TriggeredOperations

The semantics of triggered operations imply that (at a minimum)
operations will proceed in the order that their trigger threshold is
reached. A quality implementation will also release operations that
reach their threshold simultaneously on the same trig_ct_handle in the
order that they are issued.

IMPLEMENTATION

NOTE 32: Implementatiorof TriggeredOperations

The most straightforward way to implement triggered operations is to
associate a list of dependent operations with the structure referenced
by a trig_ct_handle. Operations depending on the same trig_ct_handle
with the same threshold should proceed in the order that they were
issued; thus, the list of operations associated with a trig_ct_handle may
be sorted for faster searching.

IMPLEMENTATION

NETE 23 TriggeredOperationReachinghe Threshold

The triggered operation is released when the counter referenced by
the trig_ct_handle reaches or exceeds the threshold. This means that
the triggered operation must check the value of the trig_ct_handle in an
atomic way when it is first associated with the trig_ct_handle.

89

3.16.1 PtITriggeredPut

ThePtlTriggeredPut() function adds triggered operation semantics tortireut() function described in

Section3.15.2

Function Prototype for PtITriggeredPut

int PtlTriggeredPut |ftl_handle.md_t mdhandle

ptl_sizet local_offset
ptl _sizet length,

ptl _ack req_t ackreq,
ptl_processid_t targetid ,
ptl_pt_index_t ptindex,
ptl_match_bits_t matchbits,

ptl _sizet remoteoffset ,
void xuserptr ,
ptl_hdr_datat hdr_data,
ptl_handle_ct.t trig_ct_ handle ,
ptl _sizet threshold);

Arguments

md_handle local_offset
length ackreq, targetid,
pt.index matchbits,
remoteoffsef userptr,
hdr_data

trig_ct_handle
threshold

Return Codes

PTL_OK

PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID
PTL_CT_INVALID

3.16.2 PtITriggeredGet

input See description in Sectidh15.2

input Handle used for triggering the operation.
input Threshold at which the operation triggers.

Indicates success.

Indicates that the portals APl has not been successfutiglized.
Indicates thaind handleis not a valid memory descriptor.
Indicates thatargetid is not a valid process identifier.

Indicates thatt_handleis not a valid counting event handle.

ThePtITriggeredGet() function adds triggered operation semantics toRth@et() function described in

Section3.15.3

90

Function Prototype for PtITriggeredGet

int PtlTriggeredGet jptl _handle.md_t mdhandle

ptl _sizet local_offset
ptl _sizet length,
ptl_processid_t targetid ,
ptl_pt_index_t ptindex,
ptl_match_bits_t matchbits,

void *userptr ,

ptl _sizet remoteoffset ,
ptl_handle_ctt cthandle,

ptl _sizet threshold);

Arguments

md handle target.id,
ptindex matchbits,
userptr, remoteoffset
local_offset length

trig_ct_handle
threshold

Return Codes

PTL_OK

PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID
PTL_CT_INVALID

input See the discussiton f@tiGet() .

input Handle used for triggering the operation.
input Threshold at which the operation triggers.

Indicates success.

Indicates that the portals API has not been successfutiglized.
Indicates thatnd handleis not a valid memory descriptor.
Indicates thatargetid is not a valid process identifier.

Indicates thatt_handleis not a valid counting event handle.

3.16.3 PtITriggeredAtomic

The triggered atomic operations extend the Portals atopgcations PtlAtomic() , PtIFetchAtomic() , and
PtISwap()) with the triggered operation semantics. When combined trigigered counting increments
(PtITriggeredCTlInc()), triggered atomic operations enable an offloaded, nookilg implementation of most

collective operations.

91

Function Prototype for PtITriggeredAtomic

Arguments

int PtlTriggeredAtomicptl _handle_md_t md.handle

ptl _sizet local_offset
ptl _sizet length,
ptl_ack req-t ackreq,
ptl _processid _t targetid ,
ptl _pt_index_t ptindex,
ptl_match_bits_t matchbits ,
ptl _sizet remoteoffset ,
void xuserptr ,
ptl _hdr _data_t hdr_data,
ptl _op_t operation,
ptl _datatype.t datatype
ptl _handle_ct_t trig_ct.handle ,
ptl _sizet threshold);

md_handle local_offset

length ackreq, targetid,

ptindex matchbits, input See the discussion eflAtomic() .

remoteoffsef userptr,
hdr_data, operation
datatype

trig_ct_handle
threshold

Return Codes

PTL_OK

PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID
PTL_CT_INVALID

input Handle used for triggering the operation.
input Threshold at which the operation triggers.

Indicates success.

Indicates that the portals APl has not been successfutiglized.

Indicates thaput md_handleor get md_-handleis not a valid memory descriptor.
Indicates thatarget.id is not a valid process identifier.

Indicates thatt handleis not a valid counting event handle.

92

3.16.4 PtITriggeredFetchAtomic

Function Prototype for PtlTriggeredFetchAtomic

int PtlTriggeredFetchAtomigqtl _handle_md_t

getmd handle
ptl _sizet local_getoffset ,
ptl_handle.md_t putmd.handle
ptl _sizet local_put offset
ptl _sizet length,
ptl _processid _t targetid
ptl _pt_index_t ptindex,
ptl_match_bits_t matchbits,
ptl _sizet remoteoffset ,
void xuserptr ,
ptl_hdr _data_t hdr_data,
ptl _op_t operation,
ptl _datatype.t datatype
ptl_handle_ct_t trig_ct_.handle ,
ptl _sizet threshold);

Arguments

getmd.handle

local_get offset
put md handle

local_put offset length
targetid, ptiindex
matchbits, remoteoffsef
userptr, hdr_data,
operation datatype

trig_ct_handle
threshold

Return Codes

PTL_OK

PTL_NO_INIT

PTL_MD _INVALID
PTL_PROCESSINVALID
PTL_CT_INVALID

input See the discussion eflFetchAtomic() .
input Handle used for triggering the operation.
input Threshold at which the operation triggers.

Indicates success.

Indicates that the portals APl has not been successfutiglized.

Indicates thaput md_handleor get md_-handleis not a valid memory descriptor.
Indicates thatargetid is not a valid process identifier.

Indicates thatt_handleis not a valid counting event handle.

93

3.16.5 PtITriggeredSwap

Function Prototype for PtITriggeredSwap

int PtITriggeredSwapdtl _handle.md_t

getmdhandle
ptl _sizet local_getoffset ,
ptl _handle_md_t putmdhandle
ptl _sizet local_put offset
ptl _sizet length,
ptl _processid _t targetid
ptl_pt_index_t ptindex,
ptl_match_bits_t matchbits ,
ptl _sizet remoteoffset ,
void xuserptr ,
ptl _hdr _data_t hdr_data,
void xoperand
ptl _op_t operation,
ptl _datatype.t datatype
ptl _handle_ct_t trig_ct_handle ,
ptl _sizet threshold);

Arguments

getmd handle

local_get offset
putmd.handle

local_put offset length
targetid, pt.index
matchbits, remoteoffset
userptr, hdr_data,
operand operation
datatype

trig_ct_handle
threshold

Return Codes

PTL_OK

PTL_NO_INIT

PTL _MD _INVALID
PTL_PROCESSINVALID
PTL_CT_INVALID

input See the discussion etISwap() .

input Handle used for triggering the operation.
input Threshold at which the operation triggers.

Indicates success.

Indicates that the portals APl has not been successfutiglized.

Indicates thaput md_-handleor get md_handleis not a valid memory descriptor.
Indicates thatargetid is not a valid process identifier.

Indicates thatt_handleis not a valid counting event handle.

94

3.16.6 PtITriggeredCTInc

The triggered counting event increment extends the cogietrent incrementtCTInc()) with the triggered
operation semantics. It is a convenient mechanism to peastidining of dependencies between counting events.
This allows a relatively arbitrary ordering of operatioR®r example, ®tiTriggeredPut() and aPtiTriggeredCTInc()
could be dependent art_handleA with the same threshold. If thetTriggeredCTInc() is set to incrementt_handle
B and a secon#tiTriggeredPut() is dependent ont handleB, the secon@tiTriggeredPut() will occur after the first.

Function Prototype for PtITriggeredCTInc

int PtlTriggeredCTIncptl _handle ct_t ct.handle,
ptl _sizet increment
ptl _handle_ct_t trig_ct handle ,
ptl _sizet threshold);
Arguments
ct_handle increment input See the discussion efICTInc() .
trig_ct.handle input Handle used for triggering the operation.
threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.
PTL_NO.INIT Indicates that the portals APl has not been successfutiglized.
PTL_CT_INVALID Indicates thatt_handleis not a valid counting event handle.

3.17 Operations on Handles
Handles are opaque data types. The only operation defindteantty the portals APl is a comparison function.

3.17.1 PtlHandlelsEqual

ThePtiHandlelsEqual() function compares two handles to determine if they reptebensame object.

Function Prototype for PtIHandlelsEqual

PtIHandlelsEqualtl _handle_.any_t handlel
ptl_handle.any .t handle3;

Arguments

95

handlel handle2 input An object handle. Either of these handles is allowed to bedmstant value,
PTL_I NVALI D_HANDLE, which represents the value of an invalid handle.

Discussion PtlHandlelsEqual() does not check whethaandlelandhandle2are valid; only whether
they are equal.

Return Codes

PTL_OK Indicates that the handles are equivalent.
PTL _FAIL Indicates that the two handles are not equivalent.

3.18 Summary

We conclude this chapter by summarizing the names intratlogehe portals API. We start with the data types
introduced by the API. This is followed by a summary of thedtions defined by the API which is followed by a
summary of the function return codes. Finally, we concludé & summary of the other constant values defined by
the API.

Table3.3 presents a summary of the types defined by the portals APIfifsteolumn in this table gives the type
name, the second column gives a brief description of the thyeethird column identifies the section where the type is
defined, and the fourth column lists the functions that hagaraents of this type.

96

Table 3.3. Portals Data Types:Data Types Defined by the Portals API.

Name Meaning Sec Functions

ptl_ack_req_t acknowledgment request 3.15.2 PtIPut() , PtlIAtomic() , PtITriggeredPut() ,
types PtITriggeredAtomic()

ptl _ct_type_t counting event type 3.14.2 PtICTAlloc()

ptl _ct_eventt counting event structure 3.14.2 PtICTAlloc()

ptl_eventkind _t event kind 3.13.1 PHEQGet(), PIEQWait() , PIEQPoll()

ptl_initiator _eventt event queue entry 3.13.4 PtEQGet(), PtIEQWait() , PtIEQPolI()

ptl initiator _eventt initiator event 3.13.4 PtIEQGet(), PIEQWait() , PtIEQPoll()
information

ptl _target_eventt target event information 3.13.4 PtEQGet(), PIEQWait() , PIEQPoll()

ptl_handle_any_t any object handles 3.2.2 PtiNIHandle() , PtiHandlelsEqual()

ptl_handle_eqt event queue handles 3.2.2 PtlIEQAlloc() , PIEQFree(), PIEQGet() ,

PIEQWait() , PIEQPoll()

ptl_handle_.md._t memory descriptor 3.2.2 PtIMDRelease() , PtIMEAppend() ,

handles PtiPut() , PtiGet() , PtlAtomic() ,

PtIFetchAtomic() , PtISwap(),
PtITriggeredPut() , PtITriggeredGet() ,
PtITriggeredAtomic() ,
PtITriggeredFetchAtomic()
PtITriggeredSwap()

ptl_handle_me.t match list entry handles 3.2.2 PtIMEAppend() , PtIMEUnIink()

ptl_handle_ni_t network interface handles 3.2.2 PtINIInit() , PtINIFini() , PtINIStatus() ,
PEQAIloc()

ptl_hdr _data_t user header data 3.15.2 PtlPut(), PtiGet(), PtlAtomic() ,
PtIFetchAtomic() , PtISwap() ,
PtITriggeredPut() , PtITriggeredGet() ,

PtITriggeredAtomic() ,
PtlITriggeredFetchAtomic()
PtITriggeredSwap()
ptl_interface_t network interface 3.2.5 PtINIInit()
identifiers
ptl_jid _t job identifier 3.2.6 PtiGetJid()
ptl_list_t type of list attachedtoa 3.12.2 PtIMEAppend()
portal table entry
ptl_match_bits_t match (and ignore) bits 3.2.4 PtIMEAppend() , PtIPut() , PtiGet(),
PtlAtomic() , PtIFetchAtomic() ,
PtISwap() , PtiTriggeredPut() ,
PtITriggeredGet() ,
PtITriggeredAtomic() ,
PtITriggeredFetchAtomic()
PtITriggeredSwap()
ptl _iovec.t scatter/gather buffer 3.10.2 PtIMEAppend() , PtIMDBInd() ,
descriptors PtIMDRelease()
ptl_md_t memory descriptors 3.10.1 PtIMDRelease() , PtIMDBInd()
ptl_me_t match list entries 3.12.1 PtIMEAppend()
ptl_nid_t node identifiers 3.2.6 PtiGetld()
ptl _ni _fail _t network interface specific 3.13.3 PtEQGet() , PIEQWait() , PtIEQPoll()
failures
ptl_ni_limits _t implementation 3.5.1 PtINIInit()
dependent limits
ptl _pid_t process identifier 3.2.6 PtiGetld()

continued on next page

97

continued from previous page

Name Meaning Sec Functions

ptl_processid _t process identifiers 3.8.1 PtiGetld() , PtIMEAppend() , PtIPut() ,
PtiGet() , PtlIAtomic() , PtlIFetchAtomic() ,
PtISwap() , PtiTriggeredPut() ,
PtITriggeredGet() ,
PtITriggeredAtomic() ,
PtITriggeredFetchAtomic()
PtITriggeredSwap()

ptl_pt_index_t portal table indexes 3.2.3 PtIMEAppend() , PtIPTAlloc() ,
PtIPTFree(), PtIPTEnable() ,
PtIPTDisable() , PtIPut() , PtiGet(),
PtlAtomic() , PtIFetchAtomic() ,
PtISwap() , PtITriggeredPut() ,
PtTriggeredGet() ,
PtITriggeredAtomic() ,
PtITriggeredFetchAtomic()
PtITriggeredSwap()

ptl_rank _t rank within job 3.2.6 PtiGetld()

ptl _seqt event sequence number 3.13.4 PtEQGet(), PIEQWait() , PtIEQPoll()

ptl _sizet sizes 3.2.1 PtlIEQAIlloc() , PtIPut() , PtiGet(),
PtlIAtomic() , PtIFetchAtomic() ,
PtISwap() , PtiTriggeredPut() ,

PtITriggeredGet() ,
PtITriggeredAtomic()
PtITriggeredFetchAtomic()
PtITriggeredSwap()

ptl_sr_index_t status register indexes 3.2.7 PtINIStatus()

ptl_sr_value_t status register values 3.2.7 PtINIStatus()

ptl _time_t time in milliseconds 3.13.9 PtIEQPoII()

ptl _uid _t user identifier 3.2.6 PtiGetUid()

Table3.4 presents a summary of the functions defined by the portals B first column in this table gives the
name for the function, the second column gives a brief detoni of the operation implemented by the function, and
the third column identifies the section where the functiodened.

Table 3.4. Portals Functions: Functions Defined by the Portals API.

Name Operation Definition

PtICTAlloc() create a counting event 3.14.2
PtICTFree() free a counting event 3.14.3
PtICTInc() increment a counting event by a certain value 3.14.7
PtICTGet() get the current value of a counting event 3.14.4
PtICTWait() wait for a counting event to reach a certain value 3.14.5
PtICTSet() set a counting event to a certain value 3.14.6
PtIEQAIloc() create an event queue 3.13.5
PtIEQFree() release the resources for an event queue 3.13.6
PHIEQGet() get the next event from an event queue 3.13.7
PtIEQPoll() poll for a new event on multiple event queues 3.13.9
PtIEQWait() wait for a new event in an event queue 3.13.8
PtIFini() shut down the portals API 3.4.2
PtiGet() perform agetoperation 3.15.3
PtiGetld() get the identifier for the current process 3.8.2

continued on next page

98

continued from previous page

Name Operation Definition

PtiGetJid() get the job identifier for the current process 3.9.1
PtlAtomic() perform an atomic operation 3.15.5
PtlFetchAtomic() perform an fetch and atomic operation 3.15.6
PtlSwap() perform a swap operation 3.15.7
PtiGetUid() get the network interface specific user identifier 3.7.1
PtlHandlelsEqual() compares two handles to determine if they represent the ebjaet 3.17.1
Ptlinit() initialize the portals API 3.4.1
PtIMDBInd() create a free-floating memory descriptor 3.10.3
PtIMDRelease() release resources associated with a memory descriptor 3.10.4
PtIMEAppend() create a match list entry and append it to a portal table 3.12.2
PtIMEUnIink() remove a match list entry from a list and release its resgurce 3.12.3
PtINIFini() shut down a network interface 3.5.3
PtiINIHandle() get the network interface handle for an object 3.5.5
PtINIInit() initialize a network interface 3.5.2
PtINIStatus() read a network interface status register 354
PtIPTAlloc() allocate a free portal table entry 3.6.1
PtIPTFree() free a portal table entry 3.6.2
PtIPTEnable() enable a portal table entry that has been disabled 3.6.4
PtIPTDisable() disable a portal table entry 3.6.3
PtIPut() perform aputoperation 3.15.2
PtlITriggeredAtomic() perform a triggered atomic operation 3.16.3
PtlTriggeredFetchAtomic() perform a triggered fetch and atomic operation 3.16.4
PtlTriggeredSwap() perform a triggered swap operation 3.16.5
PtlTriggeredCTInc() a triggered increment of a counting event by a certain value 3.16.6
PtITriggeredGet() perform a triggeredetoperation 3.16.2
PtlTriggeredPut() perform a triggereghutoperation 3.16.1

Table3.5summarizes the return codes used by functions defined byotit@pAPI. The first column of this table
gives the symbolic name for the constant, the second coluwves g brief description of the value, and the third
column identifies the functions that can return this value.

Table 3.5. Portals Return Codes: Function Return Codes for the Portals API.

Name Meaning Functions

PTL _CT_INVALID invalid counting event PtICTFree(), PtICTGet() , PtICTWait()
handle

PTL_EQ_DROPPED at least one event has beenPtIEQGet() , PIEQWait()
dropped

PTL_EQ_EMPTY

PTL _EQ_INVALID
PTL _FAIL

PTL _HANDLE _INVALID
PTL _IFACE _INVALID

PTL _MD _ILLEGAL

PTL_MD_IN_USE

no events available inan PtIEQGet()

event queue

invalid event queue handle PtIEQFree() , PIIEQGet()
error during initialization PtlInit() , PtIFini()

or cleanup

invalid handle PtINIHandle()

initialization of an invalid PtINIInit()

interface

illegal memory descriptor PtIMDRelease() , PtIMDBInd()
values

memory descriptor has PtIMDRelease()
pending operations

continued on next page

99

Name

Meaning

continued from previous page

Functions

PTL _MD _INVALID

PTL_ME_IN_USE

PTL _ME _INVALID

PTL_ME_LIST _TOO_LONG

PTL _NI_INVALID

PTL _NI_NOT_LOGICAL

PTL_NO_INIT
PTL_NO_SPACE

PTL_OK

PTL _PID_INVALID

PTL _PID_INUSE
PTL_PROCESSINVALID

PTL _PT_FULL
PTL_PT_EQ_NEEDED

PTL _PT_INDEX_INVALID

PTL _PT_IN_USE
PTL_SEGV

PTL_SR.INDEX _INVALID

invalid memory descriptor
handle

ME has pending
operations

invalid match list entry
handle

match list entry list too
long

invalid network interface
handle

not a logically addressed
network interface handle
uninitialized API
insufficient memory

success
invalid pid

pid is in use

invalid process identifier

portal table is full

PtIMDRelease()

PtIMEUnNIink()

PtIMEAppend()

PtIMEAppend()

PtINIFini() , PtIMDBInd() , PtIEQAIloc()
PtINIInit()

all, exceptrtlinit()

PtINIInit() , PtIMDBInd() , PtIEQAlloc() ,
PtIMEAppend()

all

PtINIInit()

PtINIInit()

PtINIInit() , PtIMEAppend() , PtIPut() ,
PtiGet()

PtIPTAlloc()

EQ must be attached whenPtIPTAlloc()

flow control is enabled
invalid portal table index
portal table index is busy
addressing violation

invalid status register
index

PtIMEAppend() , PtIPTFree()
PtIPTFree()

PtINIInit() , PtINIStatus() , PtINIHandle() ,
PtIMDBInd() , PtIEQAIloc() , PIEQGet(),
PtIEQWait()

PtINIStatus()

Table3.6 summarizes the remaining constant values introduced bydttals API. The first column in this table
presents the symbolic name for the constant, the seconthodives a brief description of the value, the third
column identifies the type for the value, and the fourth caludentifies the sections in which the constant is
mentioned. (A boldface section indicates the place thetaahss introduced or described.)

Table 3.6. Portals Constants: Other Constants Defined by the Portals API.

Name Meaning Base Type Reference
PTL_ACK_REQ request an acknowledgmentptl ack req_t 3.153.15.2
PTL_CT_ACK_REQ request a counting ptl_ack req-t 3.153.15.2
acknowledgment
PTL_OC_ACK_REQ request an operation ptl_ack req_t 3.153.15.2
completed
acknowledgment
PTL_CT_BYTE a flag to indicate a counting ptl _ct_type_t 3.14.2
event that counts bytes
PTL_CT_NONE aNULL count handle ptl_handle_ct_t 3.2.23.10.1
PTL_EQ NONE aNULL event queue handle ptl_handleeqt 3.2.2 3.10.1
PTL_EVENT_ACK acknowledgment event ptl_eventkind t 3.13.1 3.15.2

continued on next page

100

continued from previous page

Name Meaning Base Type Reference
PTL_EVENT_GET get event ptl_eventkind t 3.13.1 3.15.3
PTL_EVENT_ATOM C atomic event ptl_eventkind t 3.13.1 3.15.5
PTL_EVENT_DROPPED overflow list exhaustion ptl_eventkind_t 3.13.1
PTL_EVENT_PUT put event ptl_eventkind t 3.13.1 3.15.2
PTL_EVENT_PUT_OVERFLOW put event overflow ptl_eventkind t 3.13.1 3.15.2
PTL_EVENT _REPLY reply event ptl_eventkind t 3.13.1 3.15.3
3.155
PTL_EVENT_SEND send event ptl_eventkind t 3.13.1 3.15.2
3.155
PTL_EVENT _UNLI NK unlink event ptl_eventkind t 3.12.1 3.12.3
3.13.1
PTL_EVENT _FREE free event ptl_eventkind t 3.12.13.12.3
3.131
PTL_EVENT_PT_DI SABLED portal table entry disabled ptl_eventkind t 3.13.13.12.7
event 2.3
PTL_EVENT_PROBE probe event ptl_eventkind t 3.12.1 3.12.3
3.13.1
PTL_I FACE_DEFAULT default interface ptl _interface_t 3.25
PTL_I NVALI D_HANDLE invalid handle ptl_handleanyt 3.2.2 3.17.1
PTL_JI D_ANY wildcard for job identifier ptl_jid _t 3.9 3.2.
3.11,3.12
PTL_JI D_NONE job identifiers not ptl_jid _t 3.9
supported for process
PTL_PRI ORI TY_LI ST specifies the priority list int 3.12.2
attached to a portal table
entry
PTL_MD_EVENT _DI SABLE a flag to disable events int 3.10.1
PTL_MD_EVENT _SUCCESS_DI SABLE a flag to disable events that int 3.10.1
indicate success
PTL_LE_ACK_DI SABLE a flag to disable int 3.11.1
acknowledgments
PTL_LE_AUTH.USE JI D a flag to indicate that the int 3.11.1
job ID should be used for
access control
PTL_LE_EVENT_DI SABLE a flag to disable events int 3.11.1
PTL_LE_EVENT_SUCCESS_DI SABLE a flag to disable events that int 3.11.1
indicate success
PTL_LE_EVENT_CT_GET a flag to count get events int 3.11.1
PTL_LE_EVENT_CT_PUT a flag to count put events int 3.11.1
PTL_LE_EVENT_CT_PUT_OVERFLOW a flag to count “overflow” int 3.11.1
put events
PTL_LE_EVENT_CT_ATOM C a flag to count atomic int 3.11.1
events
PTL_LE_EVENT_CT_ATOM C_OVERFLOW a flag to count “overflow” int 3.11.1
atomic events
PTL_LE_EVENT_UNLI NK_DI SABLE a flag to disable unlink int 3.11.1
events
PTL_LE_OP_CET a flag to enableet int 3.11.14.2
operations
PTL_LE_OP_PUT a flag to enabl@ut int 3.11.14.2
operations

continued on next page

101

continued from previous page

Name Meaning Base Type Reference
PTL_LE_USE_ONCE a flag to indicate that the int 3.11.1

list entry will only be used

once
PTL_LE_MAY_ALI GN a flag to indicate that the int 3.11.1

implementation may align
an incoming message to a
natural boundary to
enhance performance

PTL_ME_ACK_DI SABLE a flag to disable int 3.12.1
acknowledgments
PTL_ME_AUTH.USE JI D a flag to indicate that the int 3.12.1

job 1D should be used for
access control

PTL_ME_EVENT_DI SABLE a flag to disable events int 3.12.1

PTL _ME_EVENT _SUCCESS_DI SABLE a flag to disable events that int 3.12.1
indicate success

PTL_ME_EVENT_CT_GET a flag to count get events int 3.12.1

PTL _ME_EVENT_CT_PUT a flag to count put events int 3.12.1

PTL_ME_EVENT _CT_PUT_OVERFLOW a flag to count “overflow” int 3.12.1
put events

PTL_ME_EVENT_CT_ATOM C a flag to count atomic int 3.12.1
events

PTL_ME_EVENT_CT_ATOM C_OVERFLOW a flag to count “overflow” int 3.12.1
atomic events

PTL_MD_EVENT_CT_SEND a flag to count send events int 3.10.1

PTL_MD_EVENT_CT_REPLY a flag to count reply events int 3.10.1

PTL_MD_EVENT_CT_ACK a flag to count int 3.10.1
acknowledgment events

PTL _MD_UNORDERED a flag to indicate that int 3.10.1

messages from this MD do
not need to be ordered

PTL_MD_REMOTE_FAI LURE_DI SABLE a flag to indicate that int 3.10.1
remote failures should not
be delivered to the local EQ

PTL_I OVEC a flag to enable int 3.12.13.10.2
scatter/gather memory
descriptors

PTL_ME_EVENT _UNLI NK_DI SABLE a flag to disable unlink int 3.12.1
events

PTL _ME_MANAGE_LOCAL a flag to enable the use of int 3.12.13.15.2
local offsets 3.15.3

PTL_ME_M N_FREE use themin_freefield in a unsigned int 3121
match list entry

PTL_ME_OP_GET a flag to enablget int 3.12.14.2
operations

PTL_ME_OP_PUT a flag to enableut int 3.12.14.2
operations

PTL_ME_NO_TRUNCATE a flag to disable truncation int 3.12.14.2

of a request

continued on next page

102

continued from previous page

Name Meaning Base Type Reference
PTL_ME_USE_ONCE a flag to indicate that the int 3.12.1
match list entry will only
be used once
PTL_ME_MAY_ALI GN a flag to indicate that the int 3.12.1
implementation may align
an incoming message to a
natural boundary to
enhance performance
PTL_NI D_ANY wildcard for node identifier ptl_nid_t 3.2.63.12.2
fields 3.12
PTL_NI _CK successful event ptl _ni_fail _t 3.13.33.13.4
PTL_NI _UNDELI| VERABLE message could not be ptl _ni_fail _t 3.13.33.13.4
delivered
PTL_NI _FLONCTRL message encounterd a flow ptl _ni_fail -t 3.13.33.13.4
control condition
PTL_NI _PERM.VI OLATI ON message encounterd a ptl _ni_fail _t 3.13.33.134
permissions violation
PTL_NI _MATCHI NG a flag to indicate that the int 3.5.2
network interface must
provide matching portals
addressing
PTL_NI _NO_MATCHI NG aflag to indicate that the int 3.5.2
network interface must
provide non-matching
portals addressing
PTL_NI _LOG CAL a flag to indicate that the int 3.5.2
network interface must
provide logical addresses
for network end-points
PTL_NI _PHYSI CAL a flag to indicate that the int 35.2
network interface must
provide physical addresses
for network end-points
PTL_NO.ACK_REQ request no acknowledgmentptl _ack req-t 3.153.15.2
4.1
PTL_CT_OPERATI ON a flag to indicate a counting ptl _ct_type_t 3.14.2
event that counts operations
PTL_OVERFLOW specifies the overflow list int 3.12.2
attached to a portal table
entry
PTL_PI D_ANY wildcard for process ptl _pid_t 3.2.63.5.2
identifier fields 3.12.23.12
PTL_PT_ANY wildcard for portal table ptl _pt_index_t 3.6.1
entry identifier fields
PTL_PT_ONLY_USE_ONCE a flag to indicate thatthe int 3.6.1

portal table entry will only
have entries with the
PTL_ME_USE_ONCE or
PTL_LE_USE_ONCE option
set

continued on next page

103

continued from previous page

Name Meaning Base Type Reference
PTL_PROBE_ONLY specifies that the match list int 3.12.2
entry should not be
attached, but should probe
only
PTL_RANK_ANY wildcard for rank fields ptl _rank _t 3.2.6§3.12.2
3.12
PTL_SR_DROP_COUNT index for the dropped count ptl _sr_index_t 3.2.7354
register
PTL_SR_PERM SSI ONS_VI OLATI ONS index for the permission ptl _sr_index t 3.2.7,354
violations register
PTL_TI ME_LFOREVER a flag to indicate ptl time_t 3.13.9
unbounded time
PTL_U D_ANY wildcard for user identifier ptl_uid_t 3.2.6§3.12.2
3.113.12

104

Chapter 4

The Semantics of Message Transmission

The portals API uses five types of messages; acknowledgmenuet reply, andatomic In this section, we
describe the information passed on the wire for each typeessage. We also describe how this information is used
to process incoming messages.

4.1 Sending Messages

Table4.1summarizes the information that is transmitted fgrarequest. The first column provides a descriptive
name for the information, the second column provides the fgpthis information, the third column identifies the
source of the information, the fourth column provides anrapimate size for the item, and the fourth column
provides additional notes. Most information that is traited is obtained directly from theutoperation.

IMPLEMENTATION

Informationon thewire
NOTE 34:

This section describes the information that portals semantics require to
be passed between an initiator and its target. The portals specification
does not enforce a given wire protocol or in what order and what
manner information is passed along the communication path.

For example, portals semantics require that an acknowledgment event
contains the user_ptr and it must be placed in the event queue
referenced by the eq_handle found in the MD referenced by the
md_handle associated with the put; i.e., the acknowledgment event
provides a pointer that the application can use to identify the operation
and must be placed the in the right memory descriptor’s event queue.
One approach would be to send the user_ptr and md_handle to the
target in the put and back again in the acknowledgment message. If an
implementation has another way of tracking the user_ptr and
md_handle at the initiator, then sending the user_ptr and md_handle
should not be necessary.

Notice that thematchbits, md handleanduser ptr fields in theputoperation are optional. If theutis originating

from a non-matching network interface, there is no needhiienmatchbitsto be transmitted since the destination will
ignore them. Similarily, if no acknowledgement was regeeshd handleanduser ptr do not need to be sent. If an
acknowlegement is requested (eitR&L_CT_ACK_REQ, PTL_ACK_REQ, or PTL_OC_ACK_REQ), then themd handlemay

be sent in thgputmessage so that thiargetcan send it back to thiaitiator in the acknowledgmernmnessage. The

md handleis needed by thé&itiator to find the right event queue for the acknowlegement everg.ushr ptr is only
required in the case of a full acknowlegmeRtl(_ACK_REQ). PTL_CT_ACK_REQandPTL_OC_ACK_REQrequests do not
require theuser ptr field to generate the acknowlegment event atitiitéator of the putoperation.

105

A portals header contains 8 bytes of user supplied datafsgmbbly thehdr_dataargument passed ®tlPut() . This is
useful for out-of-band data transmissions with or withaulkltata. The header bytes are stored in the event
generated at thearget (See SectioB.15.2o0n pages2.)

| MPLEMENTATION

Sizeof dataonthewire
NOTE 35:

Table 4.1 specifies sizes for each data item that are conformant to the
Portals 4.0 specification; however, a given implementation can impose
additional constraints to reduce the size of some of these fields. For
example, the remote_offset could each be reduced to 5 bytes on a
platform that supported less than 1 TB of memory. Further reductions
for the special case of the non-matching operation with only a
PTL_CT_ACK_REQor PTL_OC_ACK_REQwould reduce the Portals Send
Request significantly. Similar optimizations are available in other
pieces of wire information.

Table 4.1. Send Requestinformation Passed in a Send RequesP#Put() .

Information Type PtiPut() Size Notes
Argument
operation int 4b indicates gutrequest
ack type ptl _ack req_t ackreq 2b
options unsigned int md.handle 2b optionsfield from NI associated with MD
job identifier ptl _jid _t 4B local information (if supported)
initiator ptl_processid __t 4B local information
user ptl _uid _t 4B local information
target ptl_processid_t targetid 4B
portal index ptl _pt_index_t ptindex 1B
match bits ptl_match_bits t matchbits 8B opt. if optionsPTL_NI _NO_MATCH NG
offset ptl _sizet remoteoffset 8B
memory desc ptl_handlemd_t mdhandle 2B opt. if ack req=PTL_NO_ACK_REQ
header data ptl _hdr_data_t hdr_data 8B user data in header
put user pointer void * userptr 8B opt. ifackreq=PTL_NOACK_REQ

or ack req=PTL_CT_ACK_REQ
or ack req =PTL_OC_ACK_REQ

length ptl _sizet length 8B lengthargument
data bytes md.handle user data
total unsigned int 61B

Tables4.2and4.3summarizes the information transmitted inarknowledgmentMost of the information is simply
echoed from the@utrequest. Notice that thaitiator andtargetare obtained directly from theutrequest but are
swapped in generating tlezknowledgmentThe only new pieces of information in tleeknowledgmerdre the
manipulated length, which is determined as therequest is satisfied, and the actual offset used.

106

IMPLEMENTATION

NOTE 36- Acknowledgmentequests

If an acknowledgment has been requested, the associated memory
descriptor remains in use by the implementation until the
acknowledgment arrives and can be logged in the event queue. See
Section 3.10.4 for how pending operations affect unlinking of memory
descriptors.

If the target memory descriptor has tAE._ME_MANAGE_LOCAL flag set, the offset local to thtergetmemory
descriptor is used. If the flag is set, the offset requestatidinitiator is used. Anacknowledgmennessage returns
the actual value used.

Lightweight “counting” acknowlegments do not require tlotual offset used or user pointer since they do not
generate atl _initiator _eventt at theputoperationinitiator.

Table 4.2. Acknowledgment: Information Passed in an Acknowledgment.

Information Type PtlPut() Size Notes

Argument
operation int 4ab indicates amcknowledgment
options unsigned int putmdhandle 2b optionsfield from NI associated with MD
initiator ptl_processid_t targetid 4B echotargetof put
target ptl_processid_t initiator 4B echoinitiator of put
memory descriptor ptl_handlemdt mdhandle 2B echomdhandleof put
put user pointer void * userptr 8B echouserptr of put
offset ptl _sizet remoteoffset 8B obtained from the operation
manipulated length ptl_sizet 8B obtained from the operation
Total unsigned int 35B

Table 4.3. Acknowledgment: Information Passed in a “Counting” Acknowl-

edgment.

Information Type PtiPut() Size Notes
Argument

operation int 4b indicates amcknowledgment
options unsigned int putmdhandle 2b optionsfield from NI associated with MD
initiator ptl_processid t targetid 4B local information orputtarget
target ptl_processid_t initiator 4B echoinitiator of put
memory descriptor ptl_handlemdt mdhandle 2B echomd handleof put
manipulated length ptl_sizet 8B obtained from the operation
Total unsigned int 19B

Table4.4 summarizes the information that is transmitted fgredrequest. Like the information transmitted ipat
request, most of the information transmitted igetrequest is obtained directly from ti®eiGet() operation. The
memory descriptor must not be unlinked until tle@lyis received.

Table4.5summarizes the information transmitted ine@ly. Like anacknowledgmenimost of the information is
simply echoed from thgetrequest. Thénitiator andtargetare obtained directly from thgetrequest but are
swapped in generating tlieply. The only new information in theeplyare the manipulated length, the actual offset
used, and the data, which are determined ag#isquest is satisfied.

107

Table 4.4. Get Request:Information Passed in a Get RequestR#&et() and

PtiGetRegion() .
Information Type PtiGet() Size Notes
Argument
operation int 4b indicates @etoperation
options unsigned int md_handle 2b optionsfield from NI associated with MD
job identifier ptl_jid _t 4B local information (if supported)
initiator ptl_processid _t 4B local information
user ptl _uid _t 4B local information
target ptl_processid_t targetid 4B
portal index ptl _pt_index_t ptiindex 1B
match bits ptl_match_bits t ~ matchbits 8B optional if thePTL_NI _NO_MATCHI NG option
is set.
offset ptl _sizet remoteoffset 8B
memory descriptor ptl_handlemd_t mdhandle 2B destination ofeply
length ptl _sizet length 8B
initiator offset ptl _sizet local_offset 8B
get user pointer void * userptr 8B
Total unsigned int 61B

Table 4.5. Reply: Information Passed in a Reply.

Information Type PtiGet() Size Notes

Argument
operation int 4b indicates ameply
options unsigned int getmdhandle 2b optionsfield from NI associated with MD
initiator ptl_processid_t targetid 4B local information orgettarget
target ptl_processid_t initiator 4B echoinitiator of get
memory descriptor ptl_handlemd_t mdhandle 2B echomdhandleof get
initiator offset ptl _sizet local_offset 8B echolocal_offsetof get
get user pointer void * userptr 8B echouserptr of get
manipulated length ptl_sizet 8B obtained from the operation
offset ptl_sizet remoteoffset 8B obtained from the operation
data bytes obtained from the operation
Total unsigned int 43B

Table4.6 presents the information that needs to be transmitted fh@nitiator to thetargetfor an atomicoperation.
The result of aratomicoperation is aeplyand (optionally) aracknowledgmerds described in Tabié.5.

4.2 Receiving Messages

When an incoming message arrives on a network interface pthencinication system first checks that taeget

process identified in the request is a valid process thatiizaized the network interface (i.e., that thegetprocess

has a valid portal table). If this test fails, the commurimasystem discards the message and increments the dropped
message count for the interface. The remainder of the psoedepends on the type of the incoming message.

get andatomicmessages go through portals address translation (seguachgt) and must then pass an access control
test. In contrastacknowledgmerdndreplymessages bypass the access control checks and the transtap.

108

Table 4.6. Atomic Request: Information Passed in an Atomic Request.

Information Type PtlAtomic() Size Notes
Argument
operation int 2B indicates the type adtomic
operation and datatype
options unsigned int putmdhandle 2b optionsfield from NI associated with MD
ack type ptl _ack req_t ackreq 2b
job identifier ptl _jid _t 4B local information (if supported)
initiator ptl _processid_t 4B local information
user ptl _uid _t 4B local information
target ptl_processid_t targetid 4B
portal index ptl_pt_index_t pt.index 1B
memory descriptor ptl_handlemd_t putmdhandle 2B opt. ifack req=PTL_NO_ACK_REQ
user pointer void * userptr 8B opt. ifack req=PTL_NO.ACK_REQ
or ack req=PTL_CT_ACK_REQ
or ack req=PTL_OC_ACK_REQ
match bits ptl_match_bitst matchbits 8B optional if thePTL_NI _NO_MATCHI NG option
is set.
offset ptl _sizet remoteoffset 8B
memory descriptor ptl_handlemd_t getmdhandle 2B destination ofeply
length ptl _sizet putmdhandle 8B lengthmember
operand bytes operand 8B Used in CSWAP and MSWAP operations
data bytes putmd_-handle user data
Total unsigned int 65B

Acknowledgment messages include the memory descriptati@ased in the originabtlPut() operation. This

memory descriptor will identify the event queue where theng\should be recorded. Upon receipt of an
acknowledgment, the runtime system only needs to confirtrttieamemory descriptor and event queue still exist.
Should any of these conditions fail, the message is simglyadded, and the dropped message count for the interface
is incremented. Otherwise, the system builds an acknowiedg event from the information in the acknowledgment
message and adds it to the event queue.

Reception ofeplymessages is also relatively straightforward. Eagghly message includes a memory descriptor
handle. If this descriptor exists, it is used to receive tlessage. Aeplymessage will be dropped if the memory
descriptor identified in the request does not exist or it le|®e inactive. In this case, the dropped message count
for the interface is incremented. Every memory descriptoepts and truncates incomingply messages,

eliminating the other potential reasons for rejectingjaly message.

The critical step in processing an incomipgt, get or atomicrequest involves mapping the request to a match list
entry (or list entry). This step starts by using the portdeixin the incoming request to identify a list of match list
entries (or list entries). On a matching interface, thedfgnatch list entries is searched in sequential order until a
match list entry is found whose match criteria matches thietaits in the incoming request and that accepts the
request. On a non-matching interface, the first item on gtédiused and a permissions check is performed.

Becauseacknowledgmerdndreplymessages are generated in response to requests made hyciespeceiving
these messages, the checks performed by the runtime symteckhowledgments and replies are minimal. In
contrastput, get andatomicmessages are generated by remote processes and the chriémisgzbfor these
messages are more extensive. Inconping get or atomicmessages may be rejected because:

109

« the portal index supplied in the request is not valid;
« the match bits supplied in the request do not match any afidiieh list entries that accepts the request, or

« the access control information provided in the list entpgslnot match the information provided in the
message.

In all cases, if the message is rejected, the incoming messatiscarded and the dropped message count for the
interface is incremented.

A list entry or match list entry may reject an incoming requéthe PTL_ME_OP_PUT or PTL_ME_OP_GET option has not
been enabled and the operatiopig, get or atomic(Table4.7). In addition, a match list entry may reject an
incoming request if the length specified in the request iddng for the match list entry and the

PTL _ME_NO_TRUNCATE option has been enabled. Truncation is always enabled ndastlist entries; thus, a message
cannot be rejected for this reason on a non-matching NI.

Also see Sectiond.2and Figure2.9.

Table 4.7. Portals Operations and ME/LE Flags: A - indicates that the oper-
ation will be rejected, and a ¢ indicates that the operation will be accepted.

Target ME/LE Flags Operation

put get atomic
none - - -
PTL_ME_OP_PUT/PTL_LE_OP_PUT . - -
PTL_ME_OP_GET/PTL_LE OP_GET - . -
both . . .

110

References

Alverson, R. (2003, AugustRed Storm. In Invited Talk, Hot Chips 15

Brightwell, R., D. S. Greenberg, A. B. Maccabe, and R. Rig2800, February)Massively Parallel Computing
with Commodity Components Parallel Computing 26243—266.

Brightwell, R., T. Hudson, K. T. Pedretti, and K. D. Undernvdo@006, May/June)SeaStar Interconnect:
Balanced Bandwidth for Scalable PerformancelEEE Micro 2§3).

Brightwell, R., T. Hudson, R. Riesen, and A. B. Maccabe (13®cember)The Portals 3.0 Message Passing
Interface. Technical Report SAND99-2959, Sandia National Laborasor

Brightwell, R. and L. Shuler (1996, Julypesign and Implementation of MPI on Puma Portals In Proceedings
of the Second MPI Developer’s Conferenpp. 18-25.

Compag, Microsoft, and Intel (1997, Decembéfixtual Interface Architecture Specification Version 1.0.
Technical report, Compaq, Microsoft, and Intel.

Cray Research, Inc. (1994, OctobeSHMEM Technical Note for C, SG-2516 2.3Cray Research, Inc.
Infiniband Trade Association (1999ttp://www.infinibandta.org .

Ishikawa, Y., H. Tezuka, and A. Hori (1996)M: A High-Performance Communication Library for
Multi-user Parallel Envrionments. Technical Report TR-96015, RWCP.

Lauria, M., S. Pakin, and A. Chien (199&ficient Layering for High Speed Communication: Fast Messags
2.x. In Proceedings of the IEEE International Symposium on HiglidPerance Distributed Computing

Maccabe, A. B., K. S. McCurley, R. Riesen, and S. R. Wheat (;1994e) SUNMOS for the Intel Paragon: A
Brief User’s Guide. In Proceedings of the Intel Supercomputer Users’ Group. 1994ual North America
Users’ Conferencepp. 245-251.

Message Passing Interface Forum (1994R1: A Message-Passing Interface standardThe International
Journal of Supercomputer Applications and High Performa@omputing 8159-416.

Message Passing Interface Forum (1997, JMPI-2: Extensions to the Message-Passing Interfacélessage
Passing Interface Forum.

Myricom, Inc. (1997)The GM Message Passing Systeriechnical report, Myricom, Inc.

Riesen, R., R. Brightwell, and A. B. Maccabe (200B)e Evolution of Portals, an API for High Performance
Communication. To be published

Riesen, R., R. Brightwell, A. B. Maccabe, T. Hudson, and kdriédi (2006, January).he Portals 3.3 Message
Passing Interface: Document Revision 2.0Technical report SAND2006-0420, Sandia National
Laboratories.

NoOTE: This is the final version of the document for Portals verg8dh It supersedes
SAND99-2959

Shuler, L., C. Jong, R. Riesen, D. van Dresser, A. B. Macdab&, Fisk, and T. M. Stallcup (1995 he Puma
Operating System for Massively Parallel Computersin Proceeding of the 1995 Intel Supercomputer User’s
Group Conferencdntel Supercomputer User’'s Group.

Task Group of Technical Committee T11 (1998, Julgjormation Technology - Scheduled Transfer Protocol
- Working Draft 2.0 . Technical report, Accredited Standards Committee NCITS.

111

112

Appendix A

Frequently Asked Questions

This document is a specification for the portals 4.0 API. lReaping and implementing Portals sometimes have
guestions that the specification does not address. In thsmalix we answer some of the more common questions.

Q Are Portals a wire protocol?

A No. The portals document defines an APl with semantics ttetigphow messages move from one address
space to another. It does not specify how the individualdgte transferred. In that sense it is similar to the socket
API: TCP/IP or some other protocol is used to reliably trangiie data. Portals assume an underlying transport
mechanism that is reliable and scalable.

Q How are Portals different from the sockets API (TCP/IP) @& thPI API1?

A Sockets are stream-based while Portals are message-Bastals implementations can use the a priori
knowledge of the total message length to manage the buffierpr@tocols to be used. The portals API makes it easy
to let the implementation know in advance where in user spamening data should be deposited. The sockets API
makes this more difficult because the implementation willkmow where data has to go until the application issues
aread()request.

The sockets API using TCP/IP is connection-oriented whitlit$ scalability because state has to be maintained for
each open connection and the number of connections increattethe size of the machine.

MPI is a higher level API than Portals. In many ways, it pr@gdgimpler semantics and APIs. It also provides a
variety of higher level APIs (derived data types, colleetbperations) that Portals does not.

Portals are ideally suited to be used by an MPI implementatim application programmer, however, may grow
frustrated by Portals’ lack of user-friendliness. We reomend that Portals be used by systems programmers and
library writers, not application programmers.

Q What about GM, FM, AM, PM, etc.?

A There are many communication paradigms, and, especiaieirarly 1990s, many experiments were conducted
on how to best pass messages among supercomputer nodes;therroliferation of the various *M message
passing layers.

Some of them, such as GM, are hardware specific. Almost exavwyank interface vendor has its own API to access
its hardware. Portals are portable and open source. Theydasigned to run on a wide variety of networks with
NICs that are programmable or not. This was an importangdesiteria for Portals 3.0 when work on Cplant
started.

Most of the research message passing layers do not provialeility because they were designed for networks that
are, for all practical purposes, reliable. While Portalsribelves do not provide a wire protocol, Portals demand that
the transport layer underneath is reliable. This placetaRa level above the other APIs in the networking stack. On

113

reliable networks, such as ASCI Red, Portals can be impledesithout a wire protocol. On unreliable networks,
such as Myrinet, Portals can run over GM or some other protbedimplements reliability.

Some of the research paradigms do not scale to thousandde$.nim order to control local resources, some of them
use send tokens to limit the number of messages that can bismigh the network at any given time. As a machine
and its network grow, this imposes severe limitations argfaties the scalability of the message passing layer.

Q Whatis a NAL?

A NAL stands for Network Abstraction Layer. All current pde&.x implementations are in some way or another
derived from the reference implementation which employ#\& .M NAL is a very nice way to abstract the network
interface from a portals library. The library implementsreoon portals functions in user space and can be easily
ported from one architecture to another. On the other sidleeoNAL, in protected space, we find routines that are
more specific to a given architecture and network interface.

Q Must Portals be implemented using a NAL?

A No. ANAL provides a nice abstraction and makes it easier topartals implementations, but the APl and
semantics of Portals do not require a NAL.

Q Why does the portals API not specify a barrier operation?

A Earlier versions of the API had a barrier function. It turred to be quite difficult to implement on some
architectures. The main problem was that nodes would bdatenvals and not be ready to participate in a portals
barrier operation until later. The portals implementadibiad to rely on the runtime system to learn when nodes
became active. The runtime systems, in turn, usually hag$orm of barrier operation that allowed them to
synchronize nodes after booting or after job load.

Because that functionality already existed and it madegfoitplementations difficult, we decided to eliminate the
barrier operation from the portals API. However, futuresiens of Portals may have collective operations. In that
case, the portals barrier would be re-introduced.

114

Appendix B

Portals Design Guidelines

Early versions of Portals were based on the idea to use datdwses to describe to the transport mechanism how
data should be delivered. This worked well for the Puma OSheriritel Paragon but not so well under Linux on
Cplant. The solution was to create a thin API over those datiatsires and add a level of abstraction. The result was
Portals 3.x. While Portals 3.x supported MPI well for kerresddl implementations, more advanced offloading
network interfaces and the rising importance of PGAS moéegi®sed several weaknesses. This led to several
enhancements that became Portals 4.x.

When designing and expanding this API, we were guided by akpenciples and requirements. We have divided
them into three categories: requirements that must beléalfily the API and its implementations, requirements that
should be met, and a wish list of things that would be nice itdls 4.x could provide them.

B.1 Mandatory Requirements

Message passing protocolsPortalsmustsupport efficient implementations of commonly used mespagsing
protocols.

Partitioned Global Address Space (PGAS) Support.Portalsmustsupport efficient implementations of typical
PGAS languages and programming interfaces.

Portability. It mustbe possible to develop implementations of Portals on atyaofeexisting message passing
interfaces.

Scalability. It mustbe possible to write efficient implementations of Portalssigstems with thousands of nodes.

Performance. It mustbe possible to write high performance (e.g., low latenayhhiandwidth) implementations of
Portals on existing hardware and on hardware capable ofdifig Portals processing.

Multiprocess support. Portalsmustsupport use of the communication interface by tens of psssper node.

Communication between processes from different executabs. Portalsmustsupport the ability to pass messages
between processes instantiated from different execigable

Runtime independence.The ability of a process to perform message passingt notdepend on the existence of an
external runtime environment, scheduling mechanism, fegratpecial utilities outside of normal UNIX process
startup.

Memory protection. Portalsmustensure that a process cannot access the memory of anothespruithout
consent.

115

B.2 The Will Requirements

Operational API. Portalswill be defined by operations, not modifications to data strustdrieis means that the
interface will have explicit operations to send and receissages. (It does not mean that the receive operation will
involve a copy of the message body.)

MPI. It will be possible to write an efficient implementation of the pé@point operations in MPI 1 using Portals.

PGAS. It will be possible to write an efficient implementation of the oitked and atomic operations found in
PGAS models using Portals.

Network Interfaces. It will be possible to write an efficient implementation of Portaisig a network interface that
provides offload support.

Operating Systems. It will be possible to write an efficient implementation of Portaisg a lightweight kernebr
Linux as the host OS.

Message SizePortalswill not impose an arbitrary restriction on the size of message trabe sent.

OS bypass. Portalswill support an OS bypass message passing strategy. That igdrfghmance implementations
of the message passing mechanisms will be able to bypassSlaa@ddeliver messages directly to the application.

Put/Get. Portalswill support remote put/get operations.
Packets. It will be possible to write efficient implementations of Porta fhacketize message transmission.

Receive operation. The receive operation of Portalsll use an address and length pair to specify where the
message body should be placed.

Receiver managed communication.Portalswill support receive-side management of message space, and this
management will be performed during message receipt.

Sender managed communicationPortalswill support send-side management of message space.
Parallel I/0. Portalswill be able to serve as the transport mechanism for a parall&iQdileystem.

Gateways. It will be possible to writgatewayprocesses using Portals. A gateway process is a processcthates
messages from one implementation of Portals and trandmeits to another implementation of Portals.

Asynchronous operations. Portalswill support asynchronous operations to allow computation anthwnication
to overlap.

Receive side matching.Portalswill allow matching on the receive side before data is delivantmthe user buffer.

B.3 The Should Requirements

Message Alignment. Portalsshouldnot impose any restrictions regarding the alignment of tdress(es) used to
specify the contents of a message.

Striping. Portalsshouldbe able to take advantage of multiple interfaces on a singjiedl network to improve the
bandwidth

Socket API. Portalsshouldsupport an efficient implementation of sockets (includirigRJand TCP/IP).

Scheduled Transfer. It shouldbe possible to write an efficient implementation of Portalsdnl on Scheduled
Transfer (ST).

Virtual Interface Architecture. It shouldbe possible to write an efficient implementation of Portaséal on the
Virtual Interface Architecture (VIA).

116

Internetwork consistency. Portalsshould noimpose any consistency requirements across multiple
networks/interfaces. In particular, there will not be angmory consistency/coherency requirements when messages
arrive on independent paths.

Ease of use.Programming with Portalshouldbe no more complex than programming traditional messagengas
environments such as UNIX sockets or MPI. An in-depth urtdeding of the implementation or access to
implementation-level information should not be required.

Minimal API. Only the smallest number of functions and definitions neargs® manipulate the data structures
should be specified. That means, for example, that convemimctions, which can be implemented with the
already defined functions, will not become part of the API.

One exception to this is if a non-native implementation wiauffer in scalability or take a large performance penalty.

117

118

Appendix C

A README Template

Each portals implementation should provide a README fild thetails implementation-specific choices. This
appendix serves as a template for such a file by listing whéchrpeters should be specified.

Limits. The callPtINlInit() accepts a desired set of limits and returns a set of actudislimhe README should
state the possible ranges of actual limits for this impletaigon, as well as the acceptable ranges for the values
passed int@tiNIinit() . See Sectio3.5.1

Status Registers.Portals define a set of status registers (Se@i@n7). The typeptl_sr_index_t defines the
mandatoryPTL _SR_DROP_COUNT andPTL_SR_PERM SSI ONS_VI OLATI ONS, as well as all other, implementation specific
indexes. The README should list what indexes are availahtbwhat their purposes are.

Network interfaces. Each portals implementation defin@B._| FACE_DEFAULT to access the default network
interface on a system (SectioB.5and3.5.2. An implementation that supports multiple interfaces tapecify
the constants used to access the various interfaces throbgimit() .

Portal table. The portals specification says that a compliant implem@amtahust provide at least 8 entries per portal
table (Sectior8.5). The README file should state how many entries will actudlé/provided.

Job identifiers. The README file should indicate whether the implementatiopgorts job identifiers
(Section3.9).

Alignment. If an implementation favors specific alignments for memaggdaiptors, the README should state
what they are and the (performance) consequences if theyoambserved (Sectiorg10.1and3.12.7).

119

120

Appendix D

Implementations

IMPLEMENTATION

NOTE 37 Implementation®f Portals3.3

This section describes implementations of Portals 3.3 in lieu of a new
implementation of Portals 4.0. Note that the text is taken from the
Portals 3.3 document and occasionally references that document.
Many implementation concepts remain the same between the two
versions.

In this appendix we briefly mention two portals 3.3 implenagioins: A reference implementation and one that runs
on Cray’s XT3/XT4/XT5 Red Storm.

D.1 Reference Implementation

A portals 3.3 reference implementation has been writtensnwhintained by Jim Schutt. The main goal of the
reference implementation is to provide a working exampéde itmplements the syntax, semantics, and spirit of
Portals as described in the version 3.3 document. While mathesemantics remain the same or similar, many
semantics have been added or revised.

The reference implementation uses the NAL (Network Absimad_ayer) concept to separate the network
independent part from the code that is specific to the API aatbpols of the underlying layer. The reference
implementation uses the sockets APl and TCP/IP for its parisnechanism. While this is not overly efficient, the
code used to implement Portals 3.3 can be understood by thg pe@ple who are familiar with the sockets API.
Furthermore, TCP/IP is so widespread that the referenckeimgntation is executable on a large array of machines
and networks.

There is a build option that disables a separate progresadhwhich allows Portals to make progress (sending an
acknowledgmerfor example) without the layer above making calls into theagis library. This speeds up the
implementation but violates the progress rule.

The source code for the implementation is freely availatwefthe following site:
ftp://ftp.sandia. gov/ out goi ng/ pub/ portal s3

In addition to comments in the code, it contains several REMTJiles that describe the implementation. Feedback is
highly encouraged to the code authaschut @andi a. gov, and the Portals 4.0 team at Sandia National
Laboratoriesp3@andi a. gov.

A NAL that runs in Linux kernel space is currently under deyzhent.

121

ftp://ftp.sandia.gov/outgoing/pub/portals3
jaschut@sandia.gov
p3@sandia.gov

We maintain a portals web site #tt p: / / wwv. ¢s. sandi a. gov/ Port al s with links to the latest reference
implementation and other information.

D.2 Portals 3.3 on the Cray XT3/XT4/XT5 Red Storm

There are two implementations of Portals available on Gray'3/XT4/XT5 Red Storm system. One, generic, is
provided by Cray with the machine. The second, acceleratehder active development at Sandia National
Laboratories. There are plans to merge the two versionifutiire.

D.2.1 Generic

This is the version provided by Cray with its XT3/XT4/XT5 R8tbrm systems. A large portion of the portals code
is implemented inside the kernel. When messages arrive &ehstar NIC, it causes an interrupt and lets the kernel
process the portals header; i.e., resolve portal tablesaditiyg and match list traversal. The accelerated versiderun
development places more of the portals code inside the 8ediT and avoids the interrupt processing on each
message arrival.

The generic implementation does not completely match tfiaitiens in the version 3.3 document. The main
differences are listed here:

¢ PtlHandlelsEqual() is notimplemented.

« Limitations on IOVECs: Only the first and last entry can be unaligned (at the headedbtiffer and at the tail
of the buffer, everything else must be quad-byte aligned).

< There are three new functions that are not part of this decurRtlisvalidHandle() , PtiSetinvalidHandle() ,
andPtTestAtomic() .

 The following return codes are not implement&L _MD _ILLEGAL , andPTL _IFACE _INVALID .
» The typeptl sizet is 32 bits wide, not 64 bits.

e PtIEQGet() andPtIEQWait() may return atl _eventt structure that is not fully filled in.

Please refer to Cray documentation for up-to-date infoionat

D.2.2 Accelerated

An accelerated version that avoids interrupts for each agesarrival is being developed and tested at Sandia
National Laboratories. At the moment is has more limitagitian the generic implementation and leaves out several
features discussed in this document. The main ones are:

¢ Adds aPtlPost() call which combines a anetIMDUpdate() call. This eliminates a protection domain
boundary crossing in many of the common usage cases.

* ThePtlGet() operation generatesPaL_EVENT_SEND event.

Since this implementation is still under active developtnmther changes are to be expected.

122

http://www.cs.sandia.gov/Portals

Appendix E

Summary of Changes

The most recent version of this document described Porggtson 3.3 Riesen et al. 20J6Since then we have
made changes to the APl and semantics of Portals, as welbageb to the document. This appendix summarizes
the changes between version 3.3 and the current 4.0 vetdamy of the fundamental changes were driven by the
desire to reduce the tight coupling required between théagion processor and the portals processor, but some
additions were made to better support lighter weight comoations models such as PGAS.

Foremost, Portals version 4.0 adds a mechanism to cope Wétiehe concept of unexpected messages in MPI.
Whereas version 3.3 used PtIMDUpdate() to atomically ingams into the match list so that the MPI

implementation could manage unexpected messages, véifiadds an overflow list where the application provides
buffer space that the implementation can use to store uctghenessages. The implementation is then responsible
for matching new list insertions to items that have arrived are resident in the overflow list space. This change was
necessary to eliminate round trips between the processiharNIC for each item that was added to the match list
(now named the priority list).

A second fundamental change separated all resourcestiatons and targets. Memory descriptors are used by the
initiator to describe memory regions while list entries ased by targets to describe the memory regiod

matching criteria (in the case of match list entries). Tleigagation of resources was also extended to events, where
the number of event types was significantly reduced andhtoitiand target events were separated into different types
with different accessor functions.

In support of the lightweight communication semantics regflby PGAS models, lightweight “counting” events and
acknowledgements were added. In addition, a non-matchiegface was created to decrease the processing
required for PGAS messages. Finallyptatomic() function was added to support functionalities commonly
provided in PGAS models.

To better offload collective operations, a setrifgeredoperations were added. These operations allow an
application to build non-blocking, offloaded collectiveapations with independent progress. They include variants
of both the data movement operations (get and put) as welleaatbmic operations.

Anoter set of changes arise from a desire to simplify harevraplementations. The threshold value was removed
from the target and was replaced by the ability to specify éhaatch list entry is “use once” or “persistent”. List
insertions occuonly at the tail of the list, since unexpected message handliadpban separated out into a separate
list.

Access control entries were found to be a non-scalable respso they have been eliminated. At the same time, it
was recognized that tH&L_LE_OP_PUT andPTL _LE_OP_CGET semantics required a form of matching. These two
options along with the ability to include user ID or job ID ledsauthentication were movedpermissions fielden
the respective list entry or match list entry.

123

Index

Lauria, Mario i (111)
A Maccabeetal. 18.
acid (field) ..o 56, 60 Maccabe, AfthurB.coovviiennn, (111)
McCurley, Kevin S. ...t (111)
accelerated 122 Message Passing Interface Forum 27
ackreq (field) 82, 86, 90, 92, 106, 109 Bofcr %Cott g Interface Forum 111)
acknowledgment seeoperations Pe drétti Kevi.rll """"""""""""""" (111)
acknowledgmenttypel 80. ! LTy
) Pedretti, KevinT., (112)
actual (field) 41,42 Riesen et al 19 193
actualmapping (field) 41,42 Riesen Roh; """"""""""""" ’ (111)
address space Openingcooveiirineean.. 23.. Shuler ,et ol 18
address translation 23, 25,27, 28,29, 31,108 Shuler Lan.ce. """""""""""""""" (111)
addressing, portals ... 33. Stallcu' T Ma.cll< """""""""""""" (111)
AlGNMENt .\ oot 51, 55, 60, 119 P, 1 MACK .
AP o 13, [14] Tezuka, H. .o\ (111)
APlsummary ... 96 Underwood, Ke'th Do (111)
application bypass 18, 20,21, 23 varr: Dresser,hDawd (111)
application space ..., 24. Wheat, Stephen R. ... (111)
argumentnames seestructure fields
ASC oo [14 B
ASCL e [14Packground ... 18.
AtOMIC .« oo oo oo o seeoperations Barrett, Brian 1.3
AatatyPes ..ot g5, barrieroperation ... 114
OPEIAtONSt g4 Barsis,Ed ... 4..
atomic operation _____________________ 23, 25’ 83' 99 Barton, Eric .o 4..
atomic Swap _____________________________ Seeswap Braam, Peter ... 4. .
atomicoperation (field)c.ccciiii. 71 Brightwel,Ron ... 13
atomictype (field)cooiiiiii... 71 bufferalignment 51,55, 60,119
authors bypass
Compag, Microsoft, and Intel 18,21, (111) application 18, 20, 21, 23
Infiniband Trade Association 18, (111) OS oo 18,20,21, 116
Message Passing Interface Forum18, (111)
Myricom, Inc.o 21, (111) C
Task Group of Technical Committee T11 21,27, CAF e 18
(111) Camp, Bill ... 4.
Alverson 19 changes, APlanddocument 123
Alverson, Robert (111%ollective operations ..., 114
Brightwell and Shuler 19 communicationmodell 20.
Brightwelletal. 13,19 connection-oriented 18,113
Brightwell, Ron (111)onnectionlessc.coiiiiiiiiiiia., 18,19
Chien, Andrew ..., (111yonstants
Cray Research,Inc. 18,27 PTLACK_REQ 35, 80, 82, 86, 100, 105
Fisk,Lee Ann ..., (111) PTLBAND ... 84
Greenberg, DavidS. (111) PTLBOR .. e 84
HOM, AL e (111) PTLBXOR ...t 84
Hudson, Trammt (111) PTLCHAR .. e 85
Hudson, Trammell (111) PTLCSWAP ... 83,84, 88
Ishikawaetal. 14,21 PTL.CT_ACK_REQ .80, 82, 86, 100, 105, 106, 109
Ishikawa, Y. (112) PTLCTBYTEccoiiiiii.t, 81, 100
Jong, Chucooiiiii (111) PTLCTNONE 36, 51, 55, 60, 100
Lauriaetal. ...t 21 PTLCT OPERATION 81,103

124

PTLLDOUBLE 85
PTL.EQNONE 36, 45,51, 67,100
PTL.EVENTACK 51,6668, 81, 82, 100
PTL.EVENT_ATOMIC57, 62, 66, 68, 84, 101
PTL.EVENT_ATOMIC_OVERFLOW ..57, 62, 68
PTL.EVENT_DROPPED29, 31, 54, 59, 66, 68, 101
PTL_.EVENT_FREE ... 54, 56, 59, 62, 66, 68, 101

PTL.EVENT.GET 56, 62, 65, 68, 82, 101
PTL.EVENT_PROBE 62, 66, 68, 101
PTL.EVENT_PT_DISABLED 28,68,72 101
PTL.EVENT_PUT 57,62, 65, 68, 81, 101
PTL_.EVENT_PUT_OVERFLOW29, 57, 62, 66, 68,
81,101
PTL.EVENT_REPLY 51, 66, 68, 82, 84, 101
PTL.EVENT_SEND .32, 51, 56, 60, 66-68, 81, 82,
84,101, 122
PTL.EVENT_UNLINK . 54, 56, 59, 62, 6668, 101
PTLFLOAT .. 85
PTLIIFACE.DEFAULT 37,101, 119
PTLINT s 85
PTL.INVALID .HANDLE 36, 96, 101
PTLIIOVEC 51,52, 56, 61, 102
PTLJIDAANY ...t 37,55, 56, 60, 101
PTLJID.NONE 49,50, 70, 101
PTLLLAND ... e 84
PTL.LE_.ACK_DISABLE 56,101
PTL.LE.AUTH.USEJID 57,101
PTL.LE.EVENT_CT_ATOMIC! 57,101
PTL.LE_.EVENT_CT_ATOMIC_OVERFLOW .57,
101
PTLLE_EVENTCTGET 56, 101
PTL.LE_.EVENT.CT.PUT 57,101
PTL.LE.LEVENT_CT_.PUT_.OVERFLOW . 57,101
PTLLE_.EVENT.DISABLE 56, 101
PTL.LE_.EVENT_OVERDISABLE 56

PTL.LE_.EVENT_SUCCESSDISABLE ...56, 101
PTL.LE_EVENT_UNLINK _DISABLE56, 101

PTL.LE_MAY ALIGN ...t 102
PTLLEOPGET 56, 101, 110, 123
PTLLEOPPUT 56, 101, 110, 123
PTLLE.USEONCE 45,56,102 103
PTLLLONG ... e 85
PTLLLOR ... 84
PTLLXOR ... 84
PTLMAX 84
PTLLMD_EVENT.CTAACK 51,102
PTL.MD_EVENT.CT_REPLY 51, 102
PTLLMD_EVENT.CT.SEND 51, 102
PTL.MD_EVENT.DISABLE 51,101

PTL.MD_EVENT_SUCCESSDISABLE ..51, 101

PTL.MD_REMOTEFAILURE_DISABLE .51, 56,
60, 69, 102

PTL.MD_UNORDERED 51, 102

PTL.ME_ACK_DISABLE 61, 102

PTLLME_EVENT.CT.GET 62,102
PTLLME_EVENT.CT_PUT 62,102
PTL.ME_EVENT_CT_PUT_-OVERFLOW .62, 102
PTL.ME_EVENT.DISABLE 62, 67,102
PTLME_EVENT_.OVERDISABLE 62

PTL.ME_EVENT_SUCCESSDISABLE ..62, 102
PTL.ME_EVENT_UNLINK _DISABLE 62, 67, 102
PTL.ME_MANAGE _LOCAL 60, 61, 82, 83, 86-88,

102 107
PTLLME_MAY _ALIGN 61, 103
PTLMEMIN_FREE| 60, 61, 102
PTLLME_.NO_TRUNCATE| 61,102 110
PTLLME.OPGET 61,84, 102 110
PTLME_OPPUT 61, 84,102 110
PTLME.USEONCE 45,61, 103
PTLMIN ..o 84
PTLLMSWAP ...t 83, 84, 88
PTLNI_LFLOW CTRL ...ttt 69, 103
PTLNI_LOGICAL 37,41, 59, 103
PTLNI_MATCHING 41,103
PTL_.NI_NO_MATCHING41, 54, 59, 103 106

108 109
PTLNILOK 62, 66, 69, 71, 103
PTLNI_.PERM.VIOLATION 69, 103
PTLNI_PHYSICAL 37,41, 103
PTL.NI_UNDELIVERABLE! 69, 103
PTLNID_ANY 37,62, 103

PTL.NO_ACK_REQ 80, 82, 86, 103 106, 109
PTL.OC ACK_REQ 80, 82, 86, 100, 105, 106, 109

PTLOVERFLOW 57, 62,63, 103
PTLPIDANY 37, 41,62, 103
PTLPRIORITY_LIST 57,62, 63, 101
PTLLPROBEONLY 57,62, 63,104
PTLPROD ... 84
PTLPTANY ..o 45,103
PTLPT.FLOW.CONTROL 45
PTL.PT_-ONLY_USEONCE 45,103
PTLLRANK_ANYooooet. 37,62, 104
PTLSHORT ... 85
PTL.SRDROPCOUNT 37,43,104 119

PTL.SRPERMISSIONSVIOLATIONS ...37,43,
56, 60, 104, 119

PTLSUM ... 84
PTLSWAP ... 84
PTLTIME_.FOREVER 75,104
PTLUCHAR ... e 85
PTLUID_ANY 37, 55, 56, 60, 104
PTLUINT ..o 85
PTLULONG ... 85
PTLUSHORT o 85

SUMMANY v v veee e et e et e ieieaae e e 100 eVentS ... 21.
count(field)o 7.2
counting event F
allocate ... 1 failure (field)oeeei e 76
enable ... 1.56,57,62 faijure notification 51, 56, 60, 69
fTEEING ..o T8 FAQ 113
QBL.....iii T fQUIS oo 21
handle ... 78 fatch and atomic Operationoiiiii.. 99.
INCTEMENT ... B0 Eigk L@ ANN © o't 4.
set...... SRR T3 OW CONLO e e e e 72
triggered increment ... 95 portaltableentryc........ 28
WPE ..o 6 SUPPOM . e e e et 32
WAL Lo 79 USer-level . ..o 18.
CouNting evVeNtsooeeeenenn 56,61, 76 fnction return codes seereturn codes
Cplant .. 13 functions
CPUINterTuUptS ...t 20. PtlAtomic . . .26, 80, 83, 85, 89, 91, 92, 97-99, 109
Cray XT3/XTAIXTS ... 121 123
cthandle (field) ... 51,53 55, 60,7681, 9095 pycTAlloc ...ttt 76,77,77,97,98
cttype (field) ... 7 PtCTEree 76,78, 98,99
PICTGet 76-78, 78,98, 99
D PUCTING ..o, 76, 77, 80, 95, 98
datamovement 23,27,33,80 PtICTSetcciiiii. 76,77,79, 98
datatypes ... 36, 97 PtICTWait 16, 77,79, 98,99
datatype (field) 86-88, 92-94 PtIEQAIlloCc 35, 65, 71, 71, 97,98, 100
designguidelines 115 PtIEQFree 65, 72, 73,9799
desired (field)t 41, 42 PtIEQGet 65,72, 73,73 74,75, 97-100, 122
desiredmapping (field) 41 PtIEQPOIl 33,65, 72-75, 75, 97, 98
discardedevents ..., 81. PHIEQWait 33,65, 7274, 74, 75, 97-100, 122
discarded messages 19,.23,29, 108 110 PtlFetchAtomic 26, 80, 83, 86, 91, 93, 97-99
DMA e [14] PtIFini 37, 38, 38,98, 99
dropped message count 43,104, 108-110 PtiGet 30, 80, 82, 83, 90, 91, 97, 98, 100, 107, 108
dropped messageevent 54, 59, 66 122
dropped messages 37,.73-75,99 PtiGetld42 48,49 97,98
PtiGetdid 50, 97,99
E PtiGetUid 47,48, 98, 99
eqhandie (field) 45,51,53 72-74,105 PtHandlelskqual 95,96, 97,99, 122
eqhandles (field)ooooeirinnn. 75 Pt 35,37, 38, 38, 99, 100
BVENL .ot 56,65 PllsvValidHandie ... 122
disable ... 56,62 101,102 PULEApDENd ... 54,57
failure notification 69 PULEURlink ... 24, 58
OCCUITENCE ..ttt 66 PUMDBInd 50,52,53,97, 99,100
overflow listcooviiiiiiiin.. 56, 62 PtMDRelease 50,53, 97,99, 100
PES e emens e 5o PIMDUpdate oo 122
types (diagram)oeiiiiiiiiiin.. 67. ppend39, 59, 62, 63, 64, 66, 68, 70, 97-100
unlink ... 56, 62 Pt'MEpr_‘“”k """""""" 59,64, 97, 99,100
event (field)oeveeinen... 69, 73-75, 78 PUNIFini ... 39, 40,43 97,99, 100
EVENTQUEUEot e e [14] PUNIHandle 39, 44, 97, 99, 100
allocationciiiiiiii, 71 PUNIInit ... 39,40, 41, 42,43, 97, 99, 100, 119
e I, 72 PtNIStatus 37,39, 43,43, 56, 60, 97-100
BB et 73 PtIPost 122
POI oo 74 PUPTAllOC ... 45, 72, 98-100
YD et 69 PUPTDisable 46, 98 99
Walt . 74 PtPTEnable 32,47, 98,99
PtIPTFree 46, 98-100

126

PtIPut . .30, 80, 81, 81, 83, 86-88, 90, 97-100, 106,
107,109
PtlSetinvalidHandle 122
PtiSwap 80, 83, 88, 91, 94, 9799
PtlITestAtomic, 122
PtlTriggeredAtomic 89, 92, 9799
PtITriggeredCTINC 91, 95,99
PtITriggeredFetchAtomic 93, 9799
PtlTriggeredGet 89, 90, 91, 97-99
PtlTriggeredPut 90, 95, 9799
PtlTriggeredSwap 94, 97-99
SUMMATY © ettt e et e e e e 938
G
gather/scatter seescatter/gather
OENEIIC ottt 122
08t ot seeoperations
getID o 49
getuid ..o 47.
getmd.handle (field) 87-89, 92-94, 108 109
Greenberg, David i 4.
H
Hale, Art ... 4.
handle ... 36.
(o0 0] = 1<T0] o 95.
encoding ... 36, 44
OPerationso.eiiiiii 95.
handle (field) ... i i 44.
handlel (field) L. 96.
handle2 (field) i 96.
hardware specific 113
hdr_data (field) 66, 71, 82, 86-88, 90, 92-94, 106
headerdata 82, 86-88, 97, 106
header, trusted 47,49
Hoffman,Eric 4.
Hudson, Trammell 1,3
I
/lOvectorcovvvvn... seescatter/gathe§2
ID e 37
Ot o 49
JOb seejob ID
network interface 36, 37
nodeot seenode ID
Processooiiiinn. seeprocess ID
thread ...l seethread ID
uid(get) ... AT
USEI ottt e seeuser ID
id(field) ... 49
identifier seelD
iface (field) 41,42, 45, 47
ignore bits ... 29,62

ignorebits (field)o o i 62
implementation i 121
implementationnotes 12.
implementation, quality 42
increment (field) 80, 95
indexes, portali i 36.
initialization 37

initiator . .see alsdarget, [14],23, 25-27, 52, 55, 66-71,
81-84, 105-109

initiator (field) 70
interrupt 20,122
interruptlatency i, 21
iov_base (field) 52
jovlen (field)co i 52
Istrail, Gabi ... AL
J
jd(field) ... 50, 55, 70
jobID 37, 49,50, 55, 70, 97, 99, 101, 119
Johnston, Jeanette ... 4
Jong, Chu ... 4. .
K
Kaul, Clint ... e 4.
L
LE h4
accesscontrol 27,28, 47,55, 57
alignment ... 55
apPeNd ... 57.
liSttypes ... 57
OPLIONS ..\t 56
pending operationo i 58.
PEermissions ..., 27, 28,57
probe 57
protection e 217,28
unlink ... 54, 58
le(field) ... 58
le_handle (field) ..., 58,59
length (field) 51, 55, 60, 82-84, 86-88, 90-94, 106, 108
109
Levenhagen,Mike i, 4..
lightweightevents 76
IMitS ..o 40,97,119
LiNUX © o e 116
St (184
listentry seelE, 20, 31, 54
localoffset ...t seeoffset
localgetoffset (field) 87, 88,93 94
localoffset (field) 82, 83, 85,90-92, 108
local putoffset (field) 87,88, 93,94
M
Maccabe, ArthurB., 1,3

127

mapsize (field) i 41 minfree (field) 29,60, 61, 71, 102
match bits ...27, 29, 35, 36, 62, 82, 83, 86-88,97, 106, mlength (field) 29,66, 70,71, 81

108-110 MPI ... [14]18, 19, 27,58, 63, 82,113 116
match ID checking, 64. progressruleo 18 21
matchlist 59 MPIlscalability 18
match listentries 20 MPP e [14]
match listentry seeME, 54,59,62 Myrinet 114
matchbits (field) 62, 70, 82, 83, 86-88, 90-94, 105 106,

108, 109 N
matchid (field) ... 59,6264 NAL .. [14},14, 121
matching address translation 30.. NAMING CONVENtIONS . .+ + s v eeeeeeeeeees e ' 35,
maxatomicsize (field) 40,83 RatWOrK . [14]
maxcts(flgld).................................4.0 network independence 18.
maxeqs (f'e(']f')la)- v 40 nework interface see alsal, 20, 35-37, 38, 40, 54, 59
maxiovecs (field)

! 108
maxmds. (f'el,d) """""""""""""""" 40 network interface initialization 40
maxmegll.zg (fllde)ld) 38 network interfaces
maxmes (field) ;

') multiple ... 119
maxmsgsize (field) ... 40 network scalabilityoveeeee 18
”M‘z‘éﬁhgd?e\(/fl 'r?'d) ---------------------------- -42 NEW.CE (FIEI) .. oo 79

y NCVITL e e . Nl
MD Lo 50 OPHONS oo a1
AlGNMEN SLIIO NN e 43
b'”t?' -------------------------------------- gi NEhaNdIe ... 44
OPUONS oo NEINIE .. 40
pending operation B3, 107 N StAtUS + v 43.
release ... 50,53,97,99,100 ; fail type (field) 32,56, 60, 66, 69, 71
J (;,In:éjl’;k 12; ni_handle (fle'd) .. 41-50,52, 53,57, 58, 62, 63, 72, 77
md(field) L3 6
nid (field) 48
md handie (field)53, 54, 81-83, 85, 86, 90-92, 105-108 nodEa y .) .. [14]
ME 59
nodelD ... 27,29,37,48
access control 21-29,47,55,62 4y matching address translation 31..
a"g"‘m;”t ----------------------------- 60, 16133 NULLLE @@t 55
APPENT - - " NULLME ... 60
free ... 66, 68, 101
ignore bits oLl seeignore bits e
lISttypes ... 63
match bits seematch bits offset ... 2.7,70,106-109
MESSAYE MEJECE ... e e 110 local 60, 61, 70, 71, 81-83 102
OPtIONS .ot 60 remote 56,60, 70, 71, 82, 83, 86-88
pending OPerationo...... 64. offset.(ﬂeld) 71
PEIMISSIONS .+ v\ e v, 2729 g2 One-sided operation 20,.27
prObe 62, 63, 66, 68, 101 Opening into address spaceooiil, 23..
PIOtECHON -\ v s e 2729 operand R R R PP RR PR 109
truncate ..., 61, 70, 102 109 110 Operar?d (f|9|d) 83 88,94
unlink ..., 29, 59, 60, 64-68, 97, 99-101 Operat!on (f|8|d) 86-88, 92-94
ME (FEI) + v e g3 operationcompleted ... 81.
mehandle (field)oooeeeeei 63,64 operations
memory descriptor see alsadviD, [14], 20, 31, 50 acknowledgment .26, 43, 56, 61, 65-67, 105-109,
MESSATE . .ttt ettt e [14] 1,21
Message OPerationc..coeeeeuneeeoin. [14] atomic ..14,23, 25, 28 43 56, 61, 66-68, 85,105
message rejection i 109 1,08'110
messages, reCeivingcooeeeeeeneenn.. 108 atomics ... R R 83
messages, SENdiNGcuueerneannei.. 105. fetch and atomic ..., 86

get 14, 23, 25, 26, 28, 40, 43, 56, 60, 61, 65, 67-69,
82,83, 84,98, 99, 101, 102 105, 107110
one-sided
put 14, 20, 21, 23, 25, 28, 33, 40, 43, 56, 60, 61, 65,
67-69, 81, 82-84, 99, 101, 102, 105-110
reply . .21, 25, 32, 40, 43, 56, 58, 61, 64, 66, 68, 69,

83, 105, 107109

SWAP « e 88.
two-sided, 20, 27
options (field) 41, 45, 51, 56, 60, 106-109
ordering semantics 19,20, 30,51
OSbhypasscovvviiinnnn. 18,20, 21, 116
Otto, JiM .. 4..
overflow list24, 28, 29, 31, 33, 54, 59, 66, 68, 70, 80, 81,
123
P
paralleljob 19,49
Pedretti, Kevin i 13
pendingoperation000ea... seeMD
people
Barrett, Brianccoiiin... 1,3
Barsis,BEd 4.
Barton,Eric 4.
Braam, Peter 4..
Brightwel, Ron 1.3
Camp, Bill ... 4.
Fisk,Lee Ann 4.
Greenberg, David o 4..
Hale, Art 4.
Hoffman, Eric ..., 4.
Hudson, Trammell 1,3
Istrail, Gabi 4.
Johnston, Jeanette 4..
Jong,Chu 4..
Kaul,Clint e 4.
Levenhagen,Mike 4. .
Maccabe, ArthurB. 1,3
McCurley, Kevin ... 4.
Otto, JiM .. 4.
Pedretti, Kevin 13
Pundit, Neil i 4.
Riesen,Rolf 13
Robboy, Davidooos 4.
Schutt,Jim o 4,121
Sears,Mark i i 4.,
Shuler,Lance ..., 4..
Stallcup, Mack ... 4.
Underwood, Keith 1.3
Underwood, Todd ..., 4.
Vigil,Denao 4.
Ward, Lee ... 4.
Wheat, Stephen 4. .
van Dresser,David 4..

performance i 115
permission violationscount 43,104
PGAS ... 18 116
pid(field)coooiiii 41,42, 48
portability 39,113
portal
INdEXES .. 36
table 27,39,119
tableindex 45-47, 54,59, 106, 108-110
portaltableentry 35 45
allocation i 45
disable ... 46
enable At
freeing 46
portal table entry disabled event 101
Portals
early versions ... 13.
Version2.0 ... 13
Version3.0 ... 13
portals
addressing seeaddress translation
constants ...t seeconstants
constantssummary i 100
datatypes ... 36,97
design ... 115
functions seefunctions
functionssummary 98
handle 36
multi-threading 33
naming conventions 35.
operations ..., seeoperations
returncodes seereturn codes
return codes summaryoeuen... 99.
scalability 19
CSEMANLCS .. 105
SIZBS L 36.
portalsd.h 35.
priority list [14]28, 31, 54, 66, 81
PrOCESS .ottt ettt e [123,
process aggregation, 49..
process ID ...27,29, 37,41, 48, 48, 49, 59, 62, 64, 82,
86-88, 97
wellknown ... 41
PrOgIESS vttt ettt 21.
progressrule il 18 21, 121
protected space ..., 24,25
PT
OPLIONS .. 45

ptindex (field) 45-47, 57, 58, 62-64, 70, 82, 83, 86-38,
90-94, 106, 108 109

ptindexreq (field) il 45
PTL.ACK_REQ (const) 35, 80, 82, 86, 100, 105
PTLBAND (const)ccoiiiiiiiiiiinn. 84
PTLBOR (CONSt) ..ot 84

PTLBXOR (CONSE) ..o 84
PTL.CHAR (const)ooviiiiiii 85
PTL.CSWAP (const)covvennnn. 83, 84, 88

PTL.CT_ACK_REQ (const) . 80, 82, 86, 100, 105, 106,
109
PTL.CT_BYTE (const)
PTL_CT_INVALID (return code) . 53, 78-80, 90-95, 99
PTL.CT_NONE (const) 36, 51, 55, 60, 100

PTL.CT_OPERATION (const) 81, 103
PTL.DOUBLE (const)ccvvviiiineninnn.. 85
PTL_.EQ.DROPPED (return code) 73-75,99
PTL.EQEMPTY (returncode) 73,7599
PTL_EQ_INVALID (return code) 53,73-75,99

PTL.EQ.NONE (const) 36, 45,51, 67,100
PTL_.EVENT_ACK (const) 51, 6668, 81, 82,100
PTL_.EVENT_ATOMIC (const) . .57, 62, 66, 68, 84, 101
PTL.EVENT_ATOMIC _OVERFLOW (const)57, 62, 68
PTL.EVENT_-DROPPED (const) 29, 31, 54, 59, 66, 68,
101
PTL_LEVENT_FREE (const) .54, 56, 59, 62, 66, 63, 101
PTL_.EVENT_GET (const) 56, 62, 65, 68, 82, 101
PTL.EVENT_PROBE (const) 62, 66, 68, 101
PTL.EVENT_PT_DISABLED (const) .. 28, 68, 72, 101
PTL.EVENT_PUT (const) 57,62, 65, 68, 81, 101
PTL_.EVENT_PUT_OVERFLOW (const) 29, 57, 62, 66,
68,81, 101
PTL_.EVENT_REPLY (const) .. .51, 66, 68, 82, 84, 101
PTL_.EVENT_SEND (const) .32, 51, 56, 60, 66-68, 81,
82 84,101 122
PTL.EVENT_UNLINK (const) .. 54, 56, 59, 62, 66-68,
101

PTL_FAIL (returncode) 38, 96, 99
PTLFLOAT (CONSt) . .ovvveee e 85
PTL_.HANDLE _INVALID (returncode) 44,99
PTL_IFACE_DEFAULT (const) 37,101, 119
PTL_IFACE_INVALID (return code) 42,99, 122
PTLINT (const) ... 85
PTL_INVALID _HANDLE (const) 36, 96, 101

PTLIOVEC (const) 51, 52,56, 61, 102
PTLJID_ANY (CONSt) 37, 55, 56, 60, 101
PTL.JID_-NONE (CONSt) 49,50, 70, 101
PTLLAND (CONSE) ..o 84

PTL.LE_ACK_DISABLE (const) 56, 101
PTL.LE_.AUTH_USEJID (const) 47,101
PTL_LE_EVENT_CT_ATOMIC (const) 57,101

PTL.LE_EVENT_CT_ATOMIC_OVERFLOW (const)
57,101
PTL.LE_LEVENT_CT_GET (const)
PTL.LE_LEVENT_CT_PUT (const)
PTL.LE_LEVENT_CT_.PUT_-OVERFLOW (constp7, 101
PTL_LE_EVENT_DISABLE (const)
PTL_LE_EVENT_OVER DISABLE (const)
PTL.LE_LEVENT_SUCCESSDISABLE (const) 56, 101
PTL.LE_.EVENT_UNLINK _DISABLE (const) . 56, 101

PTLLE_IN_USE (returncode) 58,59
PTL_LE_INVALID (returncode) 59
PTLLE_LIST_-TOO_LONG (returncode) 58
PTLLE_MAY ALIGN (const)cuv.n. 102

PTLLE.OP.GET (const) 56,101, 110, 123
PTL.LE.OP.PUT (const) 56,101, 110, 123
PTLLE_USEONCE (const) 45, 56,102 103

PTLLONG (CONSt) ...t 85
PTLLOR(CONSt) ..ot e e 84
PTLLXOR(CONSE) .« 84
PTLMAX (CONSE) ..o 84
PTL.MD_EVENT_.CT_ACK (const) 51,102
PTL.MD_EVENT_CT_REPLY (const) 51,102
PTL.MD_EVENT_CT_SEND (const) 51,102
PTL.MD_EVENT_DISABLE (const) 51,101

PTL.MD_EVENT_SUCCESSDISABLE (const)51, 101

PTL.MD_ILLEGAL (returncode) 53,99 122

PTL.MD_IN_USE (returncode) 54, 68, 99

PTL_MD_INVALID (return code) ... 54, 82, 83, 86, 87,
89-94, 100

PTL.MD_REMOTE FAILURE_DISABLE (const) . .51,
56, 60, 69, 102

PTL.MD_UNORDERED (const) 51,102

PTL.ME_ACK _DISABLE (const) 61,102

PTL.ME_AUTH _USEJID (const) 62,102

PTL.ME_EVENT_CT_ATOMIC (const) 62, 102

PTL.ME_EVENT_CT_ATOMIC_OVERFLOW (const)
62,102
PTL.ME_EVENT_CT_GET (const)
PTL.ME_EVENT_CT_PUT (const)
PTL.ME_EVENT_CT_PUT_.OVERFLOW (const) ..62,
102
PTL_.ME_EVENT_DISABLE (const)
PTL.ME_EVENT_OVER DISABLE (const)
PTL.ME_EVENT_SUCCESSDISABLE (const) 62, 102
PTL_ME_EVENT_UNLINK _DISABLE (const) . 62, 67,
102
PTL_.ME_IN_USE (return code) 64, 68, 100
PTL_ME_INVALID (return code)
PTLME_LIST_TOO_LONG (return code) 64, 100
PTL_.ME_MANAGE LOCAL (const) ... 60, 61, 82, 83,
86-88, 102 107

PTL.ME_MAY _ALIGN (const) 61, 103
PTL.ME_MIN _FREE (const) 60, 61, 102
PTL.ME_NO_TRUNCATE (const) 61,102 110

PTL.ME_OP_GET (const)
PTL_.ME_OP_PUT (const)
PTL.ME_USE ONCE (const)
PTLMIN (const)coiiiiiiiiiiieeeann 84
PTLMSWAP (const)c.couen.. 83, 84, 88
PTL_NI_FLOW_CTRL (const)
PTL_NI_INVALID (return code) . 43-50, 53, 58, 63, 72,
77,100

PTL-NI_LOGICAL (const) 37,41, 59, 103

130

PTL_.NI_MATCHING (const) 41,103
PTL_NI_NO_MATCHING (const) .41, 54,59, 103 106,
108 109
PTL_NI_NOT_LOGICAL (return code)
PTL.NI_OK (const) 62, 66, 69, 71, 103
PTL_.NI_PERM.VIOLATION (const)| 69, 103

PTLNI_PHYSICAL (const) 37,41, 103
PTL_NI_UNDELIVERABLE (const) 69, 103
PTL.NID_ANY (const) 37,62, 103

PTL.NO_ACK_REQ (const) . .80, 82, 86, 103 106, 109

PTL_NO_INIT (return code) . 42-50, 53, 54, 58, 59, 64,
72-75, 77-80, 82, 83, 86, 87, 89-95, 100

PTL_NO_SPACE (return code)2, 53,58, 64, 72, 77, 100

PTL.OC ACK_REQ (const) .80, 82, 86, 100, 105, 106,
109

PTL_OK (return code) 35, 38, 42-50, 53, 54, 58, 59, 63,
64, 72-75, 77-80, 82, 83, 86, 87, 89-96, 100

PTL_.OVERFLOW (const) 57,62, 63, 103
PTL_PID_ANY (const) 37,41, 62,103
PTL_PID_INUSE (returncode) 42,100
PTL_PID_INVALID (returncode) 42,100
PTL.PRIORITY_LIST (const) 57,62, 63,101
PTL_.PROBEONLY (const) 57,62, 63,104

PTL_.PROCESSNVALID (return code) .64, 82, 83, 86,

87, 89-94, 100
PTL.PROD (CONSE) . ..viiii i 84
PTLPTANY (CONSt) ... 45, 103
PTL_.PT_EQNEEDED (returncode) 46, 100
PTL.PT_FLOW_CONTROL (const) 45
PTL_PT_FULL (returncode) 46,100
PTL_PTIN_USE (returncode) 46,100

PTL_PT_INDEX_INVALID (return code) 46, 58, 64, 100

PTL_.PT_-ONLY_USE.ONCE (const)

PTL_.RANK_ANY (const)

PTL_SEGV (return code) 37, 42, 44, 48-50, 53, 72-75,
77,78,100

PTL.SHORT (const) ..., 85
PTL.SRDROP.COUNT (const) 37,43,104 119
PTL_.SRINDEX_INVALID (return code) 44,100

PTL_SR PERMISSIONSVIOLATIONS (const) 37, 43,
56, 60, 104, 119
PTL.SUM (CONSE) ...+ v e e 84

PTLSWAP (const) ... 84
PTL.TIME_FOREVER (const) 75,104
PTL.UCHAR (CONSE) ... 85
PTL_UID_ANY (const) 37, 55, 56, 60, 104
PTLUINT (CONSt) ..o 85
PTL.ULONG (const) ... 85
PTL.USHORT (CONSt)ovvviv i 85
ptlLacid_t (type) ... 55
ptl_ackreqt (type) 80, 97, 100, 103 106, 109
ptl_cteventt (type) ... 76, 97
ptl_cttypet(type) 97,100, 103
ptl_datatypet (type) ... 84

ptl_eventkind_t (type) 65, 97, 100, 101

ptl_eventt (type)L. 65, 69, 75, 122
ptl_handleany.t (type) 36,97, 101
ptl_handlectt (type) 36, 76, 100
pti_handleeqt (type) 36, 65, 97, 100
ptl_lhandlemd.t (type) 97,106-109
ptl_handlemet (type)ccooi i, 97
ptl_handleni_t (type)t 36,97

ptl_hdrdatat (type), 97,106
ptl_initiator_eventt (type) 65, 75, 97, 107
ptl_interfacet (type)
ptl_iovect (type)
ptl_jid_t (type)
ptllet (type) ... 24
ptllist(field), 57,58, 62,63

ptilistt (type) ... 97
ptl_matchbits_t (type) 35, 36, 97, 106, 108 109
ptlmdt (type) ... 50, 97
ptlmet(type) ... 59,97
ptl_ni_fail t(type) ...t 69, 97, 103
pti_ni_limits_t (type) 40, 97
ptlnid_t(type) ..o 37,97, 103
ptlopt (type) . .oov 84
ptl_pid_t (type) ..., 37,97, 103
ptl_processd._t (type) 48,62, 70, 98, 106-109
ptl_ptindext (type) 36,98, 103 106, 108 109
pti_rankt (type) ... 37,98, 104
ptlseqt (type) ... 98

ptl_sizet (type)
ptl_sr.indext (type)
ptl_sr.valuet (type)
ptl_targeteventt (type) 45,65, 71, 75, 97
ptl_time_t (type)
ptl_uid_t (type) 37,98, 104, 106, 108 109
PtlAtomic (func) .26, 80, 83, 85, 89, 91, 92, 97-99, 109,

................. 36, 98, 106-109, 122
................. 37,98,104 119

123
PtCTAlloc (func) ...t 76,77,77,97,98
PtICTFree (func) 76, 78,98, 99
PtCTGet (func)76-78,78 98 99
PtCTInc (func) 76, 77,80, 95, 98
PtCTSet (func)ccooeia.t. 76,77, 79, 98
PtCTWait (func) 76,77,79, 98 99

PtIEQAIloc (func) 35,65, 71, 71, 97, 98, 100
PtIEQFree (func) 65, 72, 73,9799
PtIEQGet (func) ...65, 72 73,73, 74, 75, 97-100, 122
PtIEQPoll (func) 33,65, 72-75, 75, 97, 98
PtIEQWait (func) .. .33, 65, 72-74, 74, 75, 97-100, 122
PtIFetchAtomic (func)26, 80, 83, 86, 91, 93, 97-99
PtIFini (func) 37,38, 38,98, 99
PtiGet (func) .. .30, 80, 82, 83, 90, 91, 97, 98, 100, 107,

108 122
PtiGetld (func)A2 48 49 97,98
PUGEIIA (FUNC) « v 50, 97, 99
PUGEtUid (FUNC) «...'vveeeeeennns 47,48, 98, 99

131

PtIHandlelsEqual (func) 95, 96, 97, 99, 122 PTLEQDROPPED 73-75,99
Ptlinit (func) 35, 37, 38, 38,99, 100 PTLEQEMPTY 73,75,99
PtlisvalidHandle (func) 122 PTLEQINVALID 53, 73-75, 99
PtILEAppend (func) ...t 54, 57 PTLFAIL ... 38, 96, 99
PtLEUNlink (func) ...t 54, 58 PTL.HANDLE_INVALID 44,99
PtIMDBInd (func) 50, 52, 53,97, 99, 100 PTLIFACE.INVALID 42,99, 122
PtIMDRelease (func) 50, 53,97, 99, 100 PTLLEIN.USEcoo.t, 58,59
PtIMDUpdate (func)c.cooeeeunn.... 122 PTLLEINVALIDccooviieeiin.. .. 59
PtIMEAppend (func)39,59, 62, 63, 64, 66, 68, 70, PTLLELIST.TOOLONG 58
97-100 PTLMD_ILLEGAL 53,99, 122
PtIMEUnNlink (func) 59, 64, 97, 99, 100 PTLMD.INUSE 54, 68,99
PtNIFini (func) 39,40, 43,97, 99, 100 PTL.MD_INVALID . 54, 82, 83, 86, 87, 89-94, 100
PtINIHandle (func) 39, 44, 97, 99, 100 PTLMEINUSE 64, 68, 100
PtINIInit (func) 39,40, 41, 42, 43,97, 99, 100, 119 PTLMELINVALID 64,100
PtINIStatus (func) 37, 39, 43, 43, 56, 60, 97-100 PTLME_LIST.TOOLONG! 64, 100
PtlPost (func) ... 122 PTL_NI_INVALID .. 43-50, 53,58, 63, 72, 77, 100
PtIPTAlloc (func)L. 45, 72, 98-100 PTLNI_NOT.LOGICALcovivun.. 100
PtIPTDisable (func) 46, 98,99 PTL.NOLINIT ... 42-50, 53, 54, 58, 59, 64, 7275,
PtIPTEnable (func) 32,47,98,99 77-80, 82, 83, 86, 87, 89-95, 100
PtIPTFree (func) 46, 98-100 PTLNO_SPACE 42,53, 58,64, 72,77, 100
PtIPut (func) 30, 80, 81, 81, 83, 86-88, 90, 97-100, 106, PTLOK 35, 38, 42-50, 53, 54, 58, 59, 63, 64,
107,109 72-75, 77-80, 82, 83, 86, 87, 89-96, 100
PtlSetinvalidHandle (func) 122 PTLPIDINUSE 42100
PtISwap (func) 80, 83, 88, 91, 94, 9799 PTLPID_INVALID 42,100
PtlTestAtomic (func)coutt. 122 PTL_.PROCESSNVALID 64, 82, 83, 86, 87,
PtlITriggeredAtomic (func) 89, 92,9799 89-94, 100
PtITriggeredCTInc (func) 91, 95,99 PTLPTEQNEEDED¢ 46, 100
PtITriggeredFetchAtomic (func)! 93, 9799 PTLPTFULL ...t 46, 100
PtITriggeredGet (func) 89, 90, 91, 9799 PTLPTINWUSE 46,100
PtITriggeredPut (func) 90, 95, 9799 PTL_PTINDEX_INVALID 46, 58, 64, 100
PtITriggeredSwap (func) 94, 97-99 PTL.SEGV ..37,42, 44, 48-50, 53, 72-75, 77, 78,
Pumao 18. 100
Pundit, Neilo i A PTL.SRINDEX_INVALID 44,100
PUIMPOSE oottt 18. SUMMATY © .ttt e ees 99
PUL .. seeoperations Riesen,Rolfl 13
putmd_handle (field) 87-89,92-94, 107,109 rlength (field) 29,66, 70
RMPP [14]
Robboy, Davidccciiiii 4.
quality implementation 42
quality of implementation 19 S
scalability L 19,113 115
R guarantee ... 19.
FaNK .. 37,48, 49 MPI . 18
Fank (feld) ... 37,48 network ... 18
README .\ v oo 35,119 Scater/gather 51,52,56,60, 61,97, 102
receiver-managed ...t 18. Schutt, Jim ... A2
Red Storm 121, 122 Sears, Mark 4. .
reliable communication 19 113 SEMANTICS . ..o 105
remote offset seeoffset SENA . 23.
remoteoffset (field) .70, 82, 83, 86-88, 90-94, 106-109 send event R TR R PP 81, 84,101
FEPIY ottt seeoperations Seduence (field) ... 1.
returncodes ..., 37,99, 122 Sequence NUMbErooovne. 71,98
PTLCTINVALID 53, 78-80, 90-95, 99 SHMEM 18,20
shmemfence() 20

132

shmemfence() ... 20

Shuler,Lanceot 4. . 108 109
size(field) ... 75 matchid 59, 62,64
SIZBS 36. maxatomicsize i 40, 83
sockets ... 113 MAXCLS .ottt e 40
space MAXEOS vttt ettt 40
applicationc i 24 MAXIOVECS ..\ttt et e e 40
protected ... 24. MaXIMAS ... 40
split event sequence seeevent start/end maxmelist ... 40
Stallcup, Mack 4. MaXMES ...t 40
start(field) 51, 55,60, 70 MaXMSQYSIZE ..ottt eeeeanns 40
State 19 113 MaxptindeXccoiiii i 40
status (field)co i 43 44 M 53
status registers ... 37,119 md_handle . 53, 54, 81-83, 85, 86, 90-92, 105-108
statusregister (field) 43, 44 01 63
structure fields and argument names mehandle 63,64
acid ... 56, 60 minfree 29, 60, 61, 71, 102
ackreq 82, 86, 90, 92, 106, 109 mlength 29,66,70, 71,81
actual ... 41,42 NEW.CE ... 79
actualmapping ..., 41,42 ni_fail type 32,56, 60, 66, 69, 71
atomicoperationo i 71 ni_handle41-50,52, 53, 57,58, 62, 63,72, 77
atoOMICLYPE 71 NI o 48
COUNE ot 12 offset ... 71
cthandle 51, 53, 55, 60, 76-81, 90-95 operand 83, 88, 94
CtAype .o 1 operation, 86-88, 92-94
datatypel 86-88, 92-94 options 41, 45, 51, 56, 60, 106-109
desired 41, 42 pPid . 41,42, 48
desiredmapping ... 41 ptindex ..4547,57, 58, 62-64, 70, 82, 83, 86-88,
eghandle 45, 51, 53, 7274, 105 90-94, 106, 108 109
eghandles i, 75 prindexreq ... 45
BVENT ..ot 69, 73-75, 78 ptllist ... 57,58, 62,63
failure 76 putmdhandle 87-89, 92-94, 107, 109
getmdhandle 87-89, 92-94, 108 109 FanK ..o 37,48
handle o 44 remoteoffset .. .70, 82, 83, 86-88, 90-94, 106-109
handlel i 96 rlengthl 29,66, 70
handle2 i 96 SEQUENCE ..ttt 71.
hdrdata 66, 71, 82, 86-88, 90, 92-94, 106 SIZ o 75
I 49 start ... 51,55, 60, 70
iface ... 41,42, 45, 47 Status ... 43,44
ignorebits ... 62 statusregister i 43 44
increment ... 80, 95 SUCCESS o vttee et e ettt 76 .
initiator ... 70 targetid 82, 83, 86-94, 106-109
iovbase ... 52 eSSt o 79
oV_len ... 52 threshold L, 89-95
L 50, 55, 70 fimeout ... 75
e 58 trigcthandleol 89-95
lehandle il 58,59 YPE e 69
length . 51, 55, 60, 82-84, 86-88, 90-94, 106, 108 UId o 48, 55, 70
109 userptr .. .58, 63, 66, 70, 71, 82, 83, 86-88, 90-94,
localgetoffset 87,88, 93,94 105-109
localoffset 82, 83, 85,9092, 108 which 74,75
localputoffset 87,88,93,94 success(field) ..., 76.
MAaPSIZE ..ottt A1 SUMMAIY ittt i 96
SUNMOS ... e (188

133

matchbits .62, 70, 82, 83, 86-88, 90-94, 105, 106,

SWap Operationc..eeieieeeaniiiiii 99.

T
target . see alsanitiator, 14, [15], 19, 20, 23, 25, 27, 47,
66-70, 80-84, 86-88, 105-108

targetid (field) 82, 83, 86-94, 106-109
TCP/IP 18,113 116,121
test(field)c i 79.
thread [13B
threadIDciiiiiiiin..... A8
threshold (field)t 89-95
timeout 74
timeout (field) i 75
trig_cthandle (field) 89-95
triggered operations 20,31, 89
AtOMIC ..o a1
counting eventincrement 95.
fetch and atomic 93
0 = 90.
PUL 90
SWAP ot et 94.
threshold 89
truncate 61, 70, 102 109,110
trusted header i AT .
two-sided operation 20, 27
type (field) ... 69
tYPES o Seedata types
ptlacidt oo 55
ptlLackreqt 80, 97, 100, 103 106, 109
ptlcteventt 76, 97
ptlcttypet ...l 97,100, 103
ptl_datatypet i 84
ptl_eventkind_t| 65, 97,100 101
ptleventt 65, 69, 75, 122
ptl_handleanyt 36,97, 101
ptl_handlectt 36, 76, 100
ptl_handleeqt 36, 65, 97, 100
ptl_handlemdt 97, 106-109
ptl_handlemet 97
ptl_handlenit 36, 97
pti_hdrdatat 97, 106
ptl_initiator_eventt| 65, 75, 97, 107
ptliinterfacet 37,97,101
ptliovect, 51,52, 56, 61, 97
ptljidt............... 37,97,101, 106, 108 109
ptldet ... 54
ptllistt ... 97
ptl_matchbitst......... 35, 36, 97, 106, 108 109
pttmdt ... R0, 97
ptlmet 59,97
ptinifail t 69, 97, 103
ptlnidimitst........................... 40,97
ptlnidt 37,97, 103
PU_OPt oo 84

ptlpidt ... 37,97,103

ptl_processd.t 48, 62, 70, 98, 106-109
ptl_ptindext 36, 98, 103 106, 108 109
ptlrankt ... i 37,98 104
ptiseqt ... 98
ptlsizet 36, 98, 106-109, 122
ptlsrindext 37,98, 104 119
ptlsrvaluet 37,98
ptl_targeteventt 4565 71, 75 97
ptltimet ... 98,104
ptluidt 37,98, 104 106, 108 109
U
uid (field) ... 48, 55, 70
undefined behavior 37,38,43
Underwood, Keith 13
Underwood, Todd ..., 4..
unexpected messageevent 66 ..
unexpected messages ... 18..
unlink ... 60
ME .. seeME
unreliable networksl 114
UPC 18
USAOE .« vttt et ittt e 33.
userdata ... 58, 63, 82
useriD 37,47,55,70, 98, 99, 104
USErMEMONY ...ttt 21.
USEISPACE ...t i ettt e e e 19..
user-level bypass seeapplication bypass
userptr (field) .58, 63, 66, 70, 71, 82, 83, 86-88, 90-94,
105-109
\
van Dresser,David ... 4..
VA [15]
Vigil,Dena ... 4.
W
Ward, Lee 4. .
website ... 122
Wheat, Stephen 4. ..
which (field)o i 74,75
wire protocol 19 23,105 113
Z
ZEIO COPY e e ettt e et e e 20.
zero-length buffer, 55 60

(n) pagen is in the bibliography.

[n] pagen is in the glossary.

n page of a definition or a main entry.

n other pages where an entry is mentioned.

134

DISTRIBUTION:

P RPRRPRPRRPMRLRRRERPR

Arthur B. Maccabe

University of New Mexico
Department of Computer Science
Albuquerque, NM 87131-1386
Trammell Hudson

c/o OS Research

1527 16th NW #5

Washington, DC 20036

Eric Barton

9 York Gardens

Clifton

Bristol BS8 4LL
United Kingdom

MS 0806
MS 0817
MS 0817
MS 1110
MS 1110
MS 1110
MS 1110
MS 1110
MS 1110
MS 1110
MS 0899

Jim Schutt, 4336

Doug Doerfler, 1422
Sue Kelly, 1422

Ron Brightwell, 1423
Neil Pundit, 1423

Rolf Riesen, 1423

Lee Ward, 1423

Ron Oldfield, 1423
Kevin Pedretti, 1423
Keith Underwood, 1422
Technical Library, 9536 (electronic)

v1.30

@ Sandia National Laboratories

	List of Figures
	List of Tables
	List of Implementation Notes
	Preface
	Nomenclature
	1 Introduction
	1.1 Overview
	1.2 Purpose
	1.3 Background
	1.4 Scalability
	1.5 Communication Model
	1.6 Zero Copy, OS Bypass, and Application Bypass
	1.7 Faults

	2 An Overview of the Portals API
	2.1 Data Movement
	2.2 Portals Addressing
	2.3 Flow Control
	2.4 Multi-Threaded Applications
	2.5 Usage

	3 The Portals API
	3.1 Naming Conventions and Typeface Usage
	3.2 Base Types
	3.2.1 Sizes
	3.2.2 Handles
	3.2.3 Indexes
	3.2.4 Match Bits
	3.2.5 Network Interfaces
	3.2.6 Identifiers
	3.2.7 Status Registers

	3.3 Return Codes
	3.4 Initialization and Cleanup
	3.4.1 PtlInit
	3.4.2 PtlFini

	3.5 Network Interfaces
	3.5.1 The Network Interface Limits Type
	3.5.2 PtlNIInit
	3.5.3 PtlNIFini
	3.5.4 PtlNIStatus
	3.5.5 PtlNIHandle

	3.6 Portal Table Entries
	3.6.1 PtlPTAlloc
	3.6.2 PtlPTFree
	3.6.3 PtlPTDisable
	3.6.4 PtlPTEnable

	3.7 User Identification
	3.7.1 PtlGetUid

	3.8 Process Identification
	3.8.1 The Process Identification Type
	3.8.2 PtlGetId

	3.9 Process Aggregation
	3.9.1 PtlGetJid

	3.10 Memory Descriptors
	3.10.1 The Memory Descriptor Type
	3.10.2 The I/O Vector Type
	3.10.3 PtlMDBind
	3.10.4 PtlMDRelease

	3.11 List Entries and Lists
	3.11.1 The List Entry Type
	3.11.2 PtlLEAppend
	3.11.3 PtlLEUnlink

	3.12 Match List Entries and Matching Lists
	3.12.1 The Match List Entry Type
	3.12.2 PtlMEAppend
	3.12.3 PtlMEUnlink

	3.13 Events and Event Queues
	3.13.1 Kinds of Events
	3.13.2 Event Occurrence
	3.13.3 Failure Notification
	3.13.4 The Event Queue Types
	3.13.5 PtlEQAlloc
	3.13.6 PtlEQFree
	3.13.7 PtlEQGet
	3.13.8 PtlEQWait
	3.13.9 PtlEQPoll

	3.14 Lightweight ``Counting'' Events
	3.14.1 The Counting Event Type
	3.14.2 PtlCTAlloc
	3.14.3 PtlCTFree
	3.14.4 PtlCTGet
	3.14.5 PtlCTWait
	3.14.6 PtlCTSet
	3.14.7 PtlCTInc

	3.15 Data Movement Operations
	3.15.1 Portals Acknowledgment Type Definition
	3.15.2 PtlPut
	3.15.3 PtlGet
	3.15.4 Portals Atomics Overview
	3.15.5 PtlAtomic
	3.15.6 PtlFetchAtomic
	3.15.7 PtlSwap

	3.16 Triggered Operations
	3.16.1 PtlTriggeredPut
	3.16.2 PtlTriggeredGet
	3.16.3 PtlTriggeredAtomic
	3.16.4 PtlTriggeredFetchAtomic
	3.16.5 PtlTriggeredSwap
	3.16.6 PtlTriggeredCTInc

	3.17 Operations on Handles
	3.17.1 PtlHandleIsEqual

	3.18 Summary

	4 The Semantics of Message Transmission
	4.1 Sending Messages
	4.2 Receiving Messages

	References
	A Frequently Asked Questions
	B Portals Design Guidelines
	B.1 Mandatory Requirements
	B.2 The Will Requirements
	B.3 The Should Requirements

	C A README Template
	D Implementations
	D.1 Reference Implementation
	D.2 Portals 3.3 on the Cray XT3/XT4/XT5 Red Storm
	D.2.1 Generic
	D.2.2 Accelerated

	E Summary of Changes
	Index

